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Abstract

One of the fundamental machine learning tasks is that of predictive classi-
fication. Given that organisations collect an ever increasing amount of data,
predictive classification methods must be able to effectively and efficiently han-
dle large amounts of data. However, it is understood that present requirements
push existing algorithms to, and sometimes beyond, their limits since many clas-
sification prediction algorithms were designed when currently common data set
sizes were beyond imagination.

This has led to a significant amount of research into ways of making classi-
fication learning algorithms more effective and efficient. Although substantial
progress has been made, a number of key questions have not been answered.

This dissertation investigates two of these key questions. The first is whether
different types of algorithms to those currently employed are required when using
large data sets. This is answered by analysis of the way in which the bias plus
variance decomposition of predictive classification error changes as training set
size is increased. Experiments find that larger training sets require different
types of algorithms to those currently used. Some insight into the characteristics
of suitable algorithms is provided, and this may provide some direction for the
development of future classification prediction algorithms which are specifically
designed for use with large data sets.

The second question investigated is that of the role of sampling in machine
learning with large data sets. Sampling has long been used as a means of avoiding
the need to scale up algorithms to suit the size of the data set by scaling down
the size of the data sets to suit the algorithm. However, the costs of performing
sampling have not been widely explored. Two popular sampling methods are

compared with learning from all available data in terms of predictive accuracy,



model complexity, and execution time. The comparison shows that sub-sampling
generally produces models with accuracy close to, and sometimes greater than,
that obtainable from learning with all available data. This result suggests that it
may be possible to develop algorithms that take advantage of the sub-sampling
methodology to reduce the time required to infer a model while sacrificing little
if any accuracy.

Methods of improving effective and efficient learning via sampling are also
investigated, and new sampling methodologies proposed. These methodologies
include using a varying proportion of instances to determine the next inference
step and using a statistical calculation at each inference step to determine suf-
ficient sample size. Experiments show that using a statistical calculation of
sample size can not only substantially reduce execution time but can do so with
only a small loss, and occasional gain, in accuracy.

One of the common uses of sampling is in the construction of learning curves.
Learning curves are often used to attempt to determine the optimal training size
which will maximally reduce execution time while not being detrimental to ac-
curacy. An analysis of the performance of methods for detection of convergence
of learning curves is performed, with the focus of the analysis on methods that
calculate the gradient of the tangent to the curve. Given that such methods can
be susceptible to local accuracy plateaus, an investigation into the frequency of
local plateaus is also performed. It is shown that local accuracy plateaus are a
common occurrence, and that ensuring a small loss of accuracy often results in
greater computational cost than learning from all available data. These results
cast doubt over the applicability of gradient of tangent methods for detecting
convergence, and of the viability of learning curves for reducing execution time

in general.
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Chapter 1

Introduction

The Information Revolution has brought with it the ability for organisations to
collect and store massive amounts of data. The justification for this collection
is that the data can potentially be used to improve the organisation. However,
data has little utility when kept in its raw form. For data to be usable it must
be transformed into information.

Many methods of transforming data into information exist, ranging from
simple analysis such as finding the mean of a collected measurement through
to building complex models describing the data. A common way of extracting
information from data is with machine learning. One of the more popular uses
of machine learning is for predictive classification, in which models of the data
are built such that an unmeasured discrete attribute of previously unseen data
can be predicted based on values of measured attributes. Examples of uses of
predictive classification include detection of credit card fraud, medical diagnosis,
and cosmological classification.

The prevalence of such uses is increasing. It can be expected that data collec-
tion will become more widespread and that collected data set sizes will increase.
Classification learning algorithms must, therefore, be able to effectively and effi-

ciently deal with large data sets. However, many algorithms were designed when



data set size was smaller than it currently is, and potentially much smaller than
in the future. Techniques to minimise this mismatch in scale are required. This

thesis investigates a number of methods by which this may be done.

1.1 Background to the Research

Much research has been performed into ways of dealing with large data sets. This
research can be generally categorized into two sets of approaches. The first set
contains those approaches that attempt to introduce new algorithms or modify
existing algorithms to better suit large data sets. This is known as “scaling
up” algorithms, with many of these approaches based on parallelising learning
algorithms. The problem with this set of approaches is that scaling up an
algorithm so that it can deal with data set sizes of today runs the risk of becoming
obsolete tomorrow. Since data set size will continue to grow, algorithms will
continue to require scaling up to deal with larger data sets.

The second set of approaches attempt to “scale down” data sets so they are
more practical to use with existing algorithms. This is often done by reducing the
size of the data set, resulting in an increase in the risk of overlooking valuable
information. It may be argued that, in practice, scaling down only increases
this risk for information that is not frequently represented in the data set, with
the implication that such low-frequency information is relatively unimportant.
However, information can be valuable precisely because it is rarely evidenced by
the data. Thus, scaling down may preclude such information being found.

Methods for scaling up algorithms and scaling down data sets have certainly
not been exhaustively explored. There is great scope for research in both areas.
This aim of this thesis is to add to the body of research on ways of dealing with

large data sets in classification learning.



1.2 Research Objectives

The objectives of the thesis are to investigate ways in which classification learn-
ing algorithms can be enhanced for use with large data sets. The objectives are

to:

1. Investigate whether different types of algorithm are required when learning
from large as opposed to small data sets. Since many classification learning
algorithms were designed when data sets were much smaller than present,
it is plausible that they are predisposed to perform better when learning

from smaller rather than larger data sets.

2. Provide a rigorous comparison of popular sampling methodologies. Given
the prevalence of sampling, it may be useful for practitioners to know
how pre-sampling and sub-sampling compare in terms of accuracy, model

complexity, and execution time. As yet, no such comparison exists.

3. Investigate alternative means of selecting sub-samples. Two strategies
often used when selecting samples are disproportionate sampling and non-
replacement. However, the effects of these within a sub-sampling context
has not been researched. Excluding these strategies may potentially reduce

execution time, without significant detriment to predictive accuracy.

4. Investigate alternative means of determining sub-sample size. Sub-samples
are often taken with a fixed, pre-determined sample size. This implies
that the number of instances from which a sub-sample is selected is unim-
portant. It is reasonable to believe that such an assumption is untrue.
Methods of determining sub-sample size based on available data should

therefore be explored.

5. Investigate the viability of learning curves. Learning curves are often used

with large data sets to determine the optimal training set size with which to



learn. However, it is believed that the viability of learning curve methods
has not been properly studied. Although learning curve methods are shown
to often reduce execution time, the conditions under which this can be

expected to occur are not known.

6. Investigate the reliability of learning curve methods that estimate the gra-
dient of the tangent to the curve. Such methods may be susceptible to
local accuracy plateaus. Much research has implicitly shown that these
plateaus exist, but their effect on various learning methods has not been

explored.

1.3 Principal Outcomes of the Thesis

The principal outcomes of the thesis are as follows:

1. As data set size increases, bias becomes the more dominant part of the
error, regardless of the expected level of bias management and variance
management of the algorithm. This suggests that algorithms that deal
with large data sets should focus on bias management rather than variance
management if the potential information in the data is to be fully realised.

(Section 3.1)
2. An analysis is provided on the causes of bias and variance. (Section 3.2.1)

3. Tt is shown that decision tree grafting acts primarily by reducing variance,
and becomes less effective for reducing bias as training set size increases.

(Section 3.2.3)

4. It is shown that reducing representational bias results in a decrease in bias,

but does not consistently lower error. (Section 3.2.3)



5.

10.

11.

Sub-sampling is shown to be a much more accurate method of sampling
than pre-sampling. Sub-sampling generally produces models with accuracy
close to that obtainable from the full training set with small sample sizes,
and sometimes induces models with accuracy greater than no sampling.
However, sub-sampling results in much longer execution time than pre-

sampling. (Chapter 4)

Disproportionate sampling and sampling with replacement affect the ac-
curacy of induced models and the time required for induction when sub-
sampling. Non-disproportionate sampling is shown to result in a greater
loss of accuracy and smaller decrease in execution time than sampling with

replacement. (Section 5.2)

. Determining sub-sample size by using a variable proportion of instances is

shown to reduce accuracy and execution time. (Section 5.3)

. Determining sub-sample size using a statistical measure of sample quality

can result in substantial time savings without loss of accuracy. (Section

5.4)

. Evaluation of the statistical quality of a sample has been extended to

continuous attributes. (Section 5.4.4)

Learning curves are often not a viable method for determining optimal
sample size, as they can be less efficient than learning from the full training

set. (Section 6.2)

Learning curve methods that detect convergence by analysing the gradient
of the tangent to the curve can lead to large loss of accuracy by finding
local accuracy plateaus, rather than the global accuracy plateau. (Section

6.3)



1.4 Software Developed

C4.5 Release 8 was the basis of most of the software used in this research.
The following modifications have been implemented to enable the experiments

detailed in this research to be performed:

1. Extended to enable pre-sampling.
2. Extended to enable sub-sampling.

3. Extended to allow different types of sub-sampling to be performed. This
included options for sampling with and without replacement, and with and

without disproportionate sampling.

4. Extended to evaluate Variable Proportion Sampling and Statistical Quality
(SQ) sampling.

The OC1 package was also extended to enable collection of results regarding

the bias plus variance decomposition of error.

1.5 Research Methodology

The nature of this research demands the use of empirical evaluation of hypothe-
ses. Experiments are performed, and the results analysed. Statistical hypothesis

tests are used where appropriate.

1.6 Structure of the Thesis

The thesis is structured as follows.

Chapter 2 is a review of literature relevant to the thesis. Problems with
applying classification learning algorithms to large data sets are outlined. Ap-
proaches to remedy these problems are discussed, and reasons why they may

not meet expectations shown.



Chapter 3 details an investigation into how the bias plus variance decomposi-
tion of classification error is affected by increased training set size. Experiments
regarding this decomposition of error are performed, as are experiments into
how the performance of two bias reduction methods varies with larger training
sets.

Chapter 4 presents experiments investigating the effects of different types of
sampling on the performance of classification learning algorithms. Performance
is compared in terms of predictive accuracy, model complexity, and execution
time.

Chapter 5 investigates modifications to the sub-sampling methodology used
in Chapter 4. These modifications are designed to reduce execution time of
sub-sampling without detrimentally affecting accuracy. Two new sub-sampling
methodologies are proposed and evaluated.

Chapter 6 discusses the viability of using learning curves with large data
sets. An analysis is made of the computational requirements of the current
best learning curve algorithm. Experiments into the reliability of the accuracy
achievable by this and similar algorithms are performed.

Chapter 7 presents conclusions and re-iterates the main findings of the the-

Sis.



Chapter 2

Review of Relevant Literature

This chapter presents a review of literature relevant to the thesis. The focus
of this review is on the impact of large data sets on supervised induction of
classification prediction models.

The review is structured as follows. Section 2.1 outlines problems that in-
duction methods encounter when faced with large data sets. Section 2.2 reviews

research into ways these problems can be mitigated.

2.1 The Problem With Large Data Sets

Classification prediction algorithms are often applied to large data sets (e.g. [37,
18, 23]). However, since many classification learning algorithms were designed
when common data set sizes were much smaller than they are now, there is
often a mismatch in scale. For example, the Nearest Neighbor algorithm has
existed since at least 1967 [24], and the CART decision tree induction algorithm
was published in 1984 [13]. At such times, data sets of terabyte size (e.g. [37])
were not only well out of the range of technical possibilities, but were likely not
taken into account in the design of algorithms. The machine learning community

has since found that this mismatch of scale can lead to significant problems in



the application of classification learning algorithms to large data sets. These

problems are discussed below.

2.1.1 Execution Time and Computational Complexity

Possibly the most obvious problem that can occur when applying classification
learning algorithms to large data sets is that of execution time. Increasing data
set, size will likely require an increase in the amount of processing required, and
hence lead to longer execution time. However, the problem is compounded by
the fact that the computational complexity of classification learning algorithms
is generally greater than linear in the number of training instances [29].

For example, the computational complexity of C4.5 has been measured at
between O(n'??) and O(n'3®), where n is the number of instances in the training
set [84]. The variation in complexity is due to the data set used. However, even
with the lower of these complexities, a large increase in training set size can be

expected to have a severe impact on execution time.

2.1.2 Memory Requirements

A second problem that can occur when using very large data sets is the ex-
cessive memory requirements of some algorithms. Many algorithms require all
training instances be retained in main memory (e.g. [88, 64, 15]). Therefore, as
data set size increases, so does the required memory size. Classification learning
algorithms also require memory for conducting searches, holding partial solu-
tions, bookkeeping, etc. These ancillary requirements alone can amount to a
substantial memory requirement.

The problem arises when the total amount of memory required by an al-
gorithm exceeds the primary memory available. If this occurs, the operating
system starts swapping — moving some of the memory allocated to a process

from main memory to disk, thus freeing space in main memory. When mem-



ory that has previously been swapped to disk is again required, it is read from
disk back into main memory. Although swapping increases the effective memory
size of computers, it comes at a cost of degraded performance, as swapping is
comparatively a very slow process. Access times times for main memory are
measured in nanoseconds, while disk access times are measured in milliseconds
— a factor of one million times slower. Thus, once swapping starts to occur,
execution times can increase greatly.

Other algorithms require only a portion of the data to be resident in memory
at any one time (e.g. [13]). However, as data set size increases, the proportion of
data residing in memory relative to the total data set size must become smaller
given a fixed maximum memory capacity. This may lead to difficulty in detecting

rare concepts in the data.

2.1.3 Efficient Data Access

A third aspect important to effective handling of large data sets is the timely
and efficient retrieval of data [93]. An algorithm that cannot obtain data when
required will certainly not execute as quickly as otherwise possible. This is
especially true for incremental algorithms, as they may continually request more
data during the induction process. Therefore, to minimise execution time of
induction algorithms, data should be organised and stored in a manner such
that timely access by an algorithm is likely. However, although this problem

affects the use of learning algorithms, it falls outside the scope of this research.

2.1.4 Model Complexity

The final problem of large data sets is the effect they have on the complexity of
inferred models. It is often desirable for induced models to be humanly under-
standable, and thus less complex models may be preferred. However, increasing

training set size often results in an increase in the complexity of the model with-
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out a corresponding increase in model accuracy [80, 81]. Therefore, learning
from large data sets may result in models that are more complex than necessary
and overfit the data.

This is counteracted by the finding that the more general a model, the less
likely it is to classify unseen instances with accuracy similar to that observed on
the training set [102]. When comparing models inferred using the same algorithm
with the same data set, it can likely be thought that the more specific the model,
the more complex it is. For example, within a decision tree context, a model is
made more specific by adding nodes, which in turn increases complexity. Thus,
to have confidence in the performance of a model on unseen data, a practitioner
may prefer a more complex model. However, this complexity should not increase

to a point where overfitting begins to detriment performance.

2.2 Approaches to Managing Large Data Sets

Many attempts to counteract the problems discussed in the previous section
have been made. Collectively, they fall into two categories: those that “scale
up” algorithms to handle large data sets, and those that “scale down” data
sets to a practical size. Good general surveys of such methods are provided by

Provost and Aronis [86] and Provost and Kolluri [85].

2.2.1 Scaling Up
Parallelising

The purpose of parallelising methods is to split the computational requirements
of a learning algorithm between many processors. An algorithm can be par-
allelised in two ways — data parallel or task parallel [19]. In a data parallel
scheme, data is partitioned so that multiple processors perform the same task

on different data subsets. The results generated by each processor are then
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combined. Two implementations of data parallel schemes are discussed below.
Task parallel schemes distribute different parts of the learning algorithm across
processors. In this situation, each processor has a copy of the data, but performs
a different task. A number of methods claim to have implemented task paral-
lel schemes for decision trees by inducing subtrees on different processors (e.g.
[19, 25, 106]). However, this is a data parallel, not a task parallel approach, as
the same procedure is being performed by each processor [56].

Provost and Aronis’ parallel approach [86] is a data parallel scheme. In
these experiments, sequential and parallel versions of the same algorithm are
compared. A model is developed, and then evaluated over the training set. The
result of the evaluation is used to accept or reject changes to the model. A
change is accepted if it reaches a minimum threshold of support and is below
a maximum threshold of counter-support. In the sequential approach, all eval-
uations are performed using the whole training set on a single processor. The
parallel approach distributes the training set across a number of processors: a
single processor is used to develop and modify the model, but multiple processors
are used to evaluate the model.

The speed improvement reported using the parallel approach is substan-
tial. Execution times are reported for different training set sizes using both
approaches, but results for the sequential approach are given to only approx-
imately 7% of the total data set size as execution times became so large that
experiments with larger training set sizes were infeasible. Execution times for
the parallel approach remained very small, even with the full training set. Al-
though these results are impressive, they are hardly surprising since the parallel
approach used 8,192 processors. Using so many processors can clearly have huge
advantages, but may not always be practical.

Others have attempted data parallel schemes using agent architectures [62].

Agents offer the advantage of using multiple processors to perform a task, but
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also allow for a more coordinated approach to the problem through a certain
amount of “intelligence” built into each agent.

However, agents still suffer from the same problems as standard data paral-
lel approaches, plus an extra, often overlooked problem. One of the benefits of
agents is that they are designed to run over a network, and are therefore dis-
tributed by nature, but must therefore also incur the communication overheads
and other associated problems involved with networks. This means that, due
to the volatile nature of networks, agent architectures cannot rely on timely, or
even eventual communication between agents. Thus, although an agent may find
the “perfect” solution, it is possible the agent will not be able to communicate
this fact to the rest of the agent architecture.

Chattratichat et al. [19] have investigated which of task and data parallel
schemes are more applicable for classification algorithms. Their results suggest
that the best strategy depends highly on properties of the particular data set
used. In some instances, the results show that parallel methods can even have
longer execution times than standard sequential algorithms, illustrating that
parallelised algorithms are not always appropriate for machine learning with
large data sets. When data and task parallel schemes should be employed has
been further explored [25], with the conclusion drawn that the decision is difficult

and dependent on the task at hand and the hardware available.

Simple and Fast Algorithms

As mentioned previously, algorithmic speed is a major factor in the usefulness
of an algorithm when dealing with very large data sets, and common machine
learning algorithms can take prohibitively long to execute [29]. However, this
is not always the case. Algorithms such as the Naive-Bayes classifier [70] can
be very computationally efficient, and hence quite quick. The drawback of such

methods, though, is that they usually sacrifice accuracy to obtain this efficiency
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[86].

Kohavi’s NBTree algorithm [64] attempts to find a middle ground between
efficiency and accuracy by combining accurate but inefficient decision trees with
Naive-Bayes classifiers. This could be expected to produce an algorithm that
retains the Naive-Bayes efficiency, but produce accuracy comparable to the more
complex decision trees. Unfortunately this is not the case. Also, the results
presented in this paper do not show an improvement in execution time against
normal decision tree algorithms.

Lazy techniques (e.g. [24, 44, 107]) can significantly reduce the amount of
time required to build a model. Rather than requiring a generalised model to be
built from a training set, lazy techniques build a specialised model for each test
instance. This has the advantage that paths that are irrelevant to the current
test instance do not need to be explored, and can significantly reduce execution
time required when the number of test instances is small However, since each test
instance requires the induction of a new model, classifying a large number of test
instances can be computationally expensive. Studies have shown that classifying
the same large number of test instances with a lazy technique generally takes
substantially longer than with an equivalent non-lazy technique. Although lazy
techniques are affected little by large training sets, it is not unreasonable to
expect that a large training set will be accompanied by a large test set. This

precludes lazy techniques from use with large data sets.

Optimisation

The objective of algorithm optimisation is to minimise the resource and com-
putational costs of a specific algorithm. This may include using efficient data
structures, optimising code, or performing a task in a more efficient way.

The third of these approaches is taken in the CWS algorithm [29]. Instead

of testing the performance of separate parts of a model (in this case, classifi-
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cation rules), CWS tests the performance of the model as a whole. Changes
to parts of the model can be explored, but are only accepted if they improve
the performance of the whole model. The reported predictive performance of
CWS is comparable to that of other systems (i.e. C4.5rules [88] and CN2 [21]),
and execution times given show that CWS is much quicker than both C4.5rules
and CN2. Unfortunately, these results appear unreliable as the environment
in which each algorithm was tested was inconsistent. For example, footnote 5
states that “the program crashed due to lack of memory. This may be due to
other jobs running concurrently.” However, CWS may be fastest regardless, as
the difference in execution times between CWS and CN2 was quite substantial.
Also, an analysis of computational complexity shows CWS to have complex-
ity O(n), compared to O(n?) for C4.5rules, raising the expectation that CWS
should be fast compared to other classification rule induction algorithms. CWS
has not yet been shown as applicable for very large data sets, though, as the
largest data set employed contained only 50,000 instances. However, the afore-
mentioned computational complexity suggests that execution time should not
be a significant negative factor on larger data sets.

Methods such as SPRINT [93] and RainForest [46] eliminate the need for
instances to be stored in main memory by maintaining summary statistics of
attributes. However, the maintenance of these statistics runs into problems
when a split is performed, as the statistics must also be partitioned between child
nodes. SPRINT does this by associating record identifiers with the statistics, so
they can be partitioned correctly after a split. A hash table is required for this
step, and can itself be too large to fit in main memory [93]. RainForest proposes
that statistics for child nodes be collected as data is partitioned, but does so
by reading all instances from disk at each node. This is clearly inefficient. The
ADTree method [75] also maintains summary statistics, but requires that both

the ADTree data structure and training instances are kept in main memory.
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Efficient C4.5 [90] implements the RainForest framework as one of three
optimisations to C4.5. However, results of reported experiments show that these
optimisations can actually increase memory requirements.

Other optimisations speed up the way in which specialisation of hypotheses
is performed. Breadth-first Marker Propagation [3] reduces complexity by the
average number of values per attribute by generating counts of the number of
instances that match all specialisations of a rule in one pass through the data.
However, the method may not be beneficial for algorithms, such as decision
trees, that separate data into different sub-sets based on the current model. For
example, the first three steps of Breadth-first Marker Propagation are irrelevant
in a decision tree context as they have already been effectively performed. The
fourth step is also, in effect, the same as is then performed in a decision tree to

create tallies of attribute values.

2.2.2 Scaling Down

An alternative to modifying algorithms so they can better handle large data
sets is to make large data sets more usable by existing algorithms. This is
the premise behind methods discussed in this section. These methods involve
relaxing constraints on induced models, reducing the complexity of attributes,

and reducing the number of instances in the training set.

Reducing Attribute Complexity

One of the more computationally expensive tasks of a learning algorithm is
sorting of continuous values. Removing this requirement can increase efficiency
greatly, and can be performed by discretising continuous attributes. This has
been studied often [89, 39, 65, 33, 105, 6, 5, 55, 14], with the method of Fayyad
and Irani [38] often shown to result in models with the lowest predictive error.

Although substantial execution time can be saved by discretising continu-
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ous attributes prior to invoking the learning algorithm, there is also a cost to
be paid in the loss of information involved in discretisation. Many of the above
mentioned discretisation methods determine discretisation intervals by analysing
one attribute at a time. This can result in important inter-relations between at-
tributes being hidden or removed from the discretised data set [5]. This may
not only harm potential accuracy of the model, but may also reduce the under-
standability of the model. Thus, pre-discretisation, while saving execution time,
also has drawbacks.

Rather than discretising continuous attributes, an alternative is to eliminate
unnecessary attributes [72]. Irrelevant attributes not only increase search space,
and hence execution time, but can also harm predictive accuracy [69].

Such attribute selection methods fall into two categories — wrapper and fil-
ter methods. Wrapper methods create multiple models using differing subsets of
features, selecting the model with the highest accuracy. Obviously, this method
comes at the cost of increase in execution time. Filter methods analyse the data
set, to determine which attributes are least useful for inducing a model. This is
performed using measures such as distance and dependence [72]. However, in-
duction algorithms that do not necessarily include all features in learned models
are filter methods in themselves [63]. These type of algorithms include decision

trees and decision rules.

Sampling

The idea behind sampling methods is to use only a portion of the available
data to extract the required information. This enables the learning algorithm to
perform its job while only having to deal with a fraction of the data that would
normally be used.

Sub-sampling [13] begins by selecting a portion of the available training in-

stances into a special training set: the sub-sample. From the sub-sample, a
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decision about the next step for the machine learning algorithm to take is made.
No instances are added to or deleted from the sub-sample. Therefore, to be
confident of making a “good” decision, it is essential that the instances within
the sub-sample are sufficiently representative of the whole data set, as no other
instances are used to verify this assumption. In other words, sub-sampling does
not use the rest of the training set to ensure that the decision made is indeed
a valid decision. It would then seem logical that a good proportion of training
instances should be included in the sub-sample to guarantee that satisfactory
decisions are made. However, as sub-sample size increases, sub-sampling be-
comes less and less advantageous. This creates a trade-off between the utility
of sub-sampling and the representativeness of the sub-sample. Establishing an
appropriate balance between the two can be difficult. An advantage of sub-
sampling, though, is that only instances in the sub-sample are kept in main
memory — the rest can remain on disk. Thus, the memory requirements of
sub-sampling are much smaller than many other machine learning algorithms.

CART uses a form of disproportionate sampling to select instances to include
in a sub-sample. Instances are selected so that the number of instances repre-
senting each class in the sub-sample are as even as possible. Alternative methods
of selecting samples include: selecting instances without replacement and with-
out regard to class distribution, so that every instance has equal chance of being
in the sample; stratification, so that the proportion of instances of each class
in the data is maintained in the sample; undersampling, where fewer instances
from well represented classes are selected; and oversampling, where instances
from under-represented classes are replicated [74].

Windowing [88] begins, like sub-sampling, by selecting a portion of the train-
ing instances — the window. Using this window, a model of the data is built.
The rest of the training data (i.e. instances not in the window) are used to

validate the model. Unlike sub-sampling, instances can be added to the win-
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dow. This is done by including a portion of the instances (at least half) that
do not fit the model into the next window. The process then starts again. This
continues until either all instances fit the model, or improvements are no longer
being made. Windowing suffers a similar problem to sub-sampling, however. If
the initial window is small, the model generated will likely not fit the data well.
Therefore, a large proportion of instances will be included in the subsequent win-
dow. Using a large initial window defeats the purpose of windowing. Another
problem with windowing is that multiple models are usually built. Although
building many models using smaller sized data sets may offer speed advantages,
it is far from optimal. Research has suggested that windowing may be more
applicable to decision rule induction than decision tree induction [45].

Catlett’s peepholing approach [16] is more complex than sub-sampling and
windowing. Instead of just decreasing the number of instances to be searched
when trying to make a decision, peepholing also attempts to decrease the number
of attributes and the range of possible values of these attributes to search. These
reductions are performed during induction, and are designed specifically for
decision trees.

Peepholing is performed in two parts: short-listing and blinkering. Short-
listing involves restricting the number of attributes to be searched by estimat-
ing the optimistic and pessimistic information gain [88, 16] of each attribute.
All attributes whose optimistic gain is less than the best pessimistic gain are
scratched, or removed from consideration. Subsets of data are used to estimate
the information gain of attributes.

Blinkering restricts the range of an attribute’s possible values to be searched.
Again, a subset of data is used, with an initial size of 300 instances. Blinkering
is performed in iterations, where each iteration eliminates a number of values
to be searched by progressively narrowing a range in which the optimal value is

presumed to lie. The subset size is increased every iteration by a factor of three.
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There are a number of problems associated with peepholing. Like window-
ing, the sample of data used can grow. However, the subset is initially quite
small. Given a training set of millions of instances, a subset of 300 instances is
a very low proportion. It may be over-zealous to exclude attributes or ranges
of values at such an early stage. A second problem is the computational com-
plexity of peepholing. Catlett [16] claims that peepholing has the computational
complexity O(n) per instance. When viewing the data set as a whole, this is a
computational complexity of O(n?).

John and Langley proposed a measure of determining when a sample is large
enough to adequately represent a data set [60], describing the Probably Close
Enough (PCE) framework for governing sample size. A sample is considered
sufficiently large if the probability of a loss of accuracy greater than a user-
specified limit is less than a user-specified probability bound. However, PCE
requires a learning algorithm whose data set size can change dynamically. Not
all machine learning algorithms meet this requirement.

One method of parallelising a machine learning algorithm, mentioned above,
is to split the data set into many disjoint subsets, then analyse each subset on a
different processor. Batching takes a similar approach, except instead of using
many processors, partitions are analysed sequentially on a single processor.

Chan and Stolfo’s partitioning approach [17] separates a data set into subsets.
A base model is then induced from each subset. Results from each base model
are combined in either of two ways suggested. The first way is to use the results
produced by each model to generate a new and final model. This model is then
used to produce the output of the system. The alternate method decides the
system output by a majority vote. Ties are broken by using an arbitration rule,
along with a trained arbiter. The arbiter is trained using “confusing” instances
as its training set. Confusing instances are classed as those for which the number

of base classifiers that agree on the output does not form a majority.
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The evidence given to support the utility of these approaches is not entirely
convincing, however. Many of the results presented show a substantial drop in
performance when compared to a non-partitioned data set. Experiments were
only performed on two data sets, with a maximum of 20,000 instances — not
a size that could generally be considered a very large data set. No information
about execution time is given, and hence a full comparison into the efficiency of
the algorithm is not present. However, given that the computational complexity
of the base model inducers is superlinear, it is reasonable to expect a substantial
reduction in execution time. This reduction should also increase with division
of data into more partitions.

Partitioning is also used with the RISE rule induction system [30], where it
is shown to substantially reduce execution time. However, these experiments
are again performed with relatively small training sets — the largest containing
43,500 instances.

Pasting [11] is a method similar to that of partitioning, in that both build a
number of models with small training sets. There are two important differences
between pasting and partitioning. The first is that, in pasting, models are
combined in a committee, without further models trained specifically to provide
arbitration or combination. The second difference is that instances are selected
for training each new model based on correctness of classifications by previous
models. As models are only built with small data sets, pasting is computationally
efficient, and can produce a model at any time. Efficiency has been further
improved by performing pasting in a distributed environment [20]. However,
pasting suffers the same problem as other methods of combining models (e.g.
[40, 10, 17]) in that the output models become exceedingly complex. This limits
the application of these approaches if comprehensible models are sought.

Rather than using all training data in small subsets, Toivonen [96] uses a

small sample of training instances to generate potential association rules with
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relaxed constraints, then evaluates the validity of those rules on the full training
set. This results in a vast speed up of execution time, but comes at the detriment
of certainty as it is possible that rules that would be supported by the full
training set will not be selected as potential rules from the sample.

Sequential or adaptive sampling methods have recently become popular (e.g.
[48, 77, 92]). The premise behind these is that the data is iteratively sam-
pled with increasing size until a bound on the number of instances required
for confidence in a decision is reached. However, such methods require con-
stant re-evaluation of the decision metric (e.g. information gain, gini index).
When discrete attributes are used, this is inexpensive as statistics can be easily
and quickly updated with new data. Continuous attributes, though, must be
ordered, requiring sorting each time new data is added. Some sequential algo-
rithms [92, 28, 60] also require that the metric must be able to be measured in
an incremental fashion, and sometimes rely on the metric being monotonic [99].

The VFDT [31] and CVFDT [57] incremental learning algorithms make the
number of instances required arbitrary by deferring growth of a decision tree
until enough instances have reached a leaf. This is done by ensuring bounds on
the number of instances required to make a decision are met, and means that
a decision will not be made with more data than necessary. However, this may
then lead to a problem with complex concepts as the amount of data required
grows with the number of leaves. These methods also work only with discrete
attributes.

The CLOUDS system [1] takes a different approach by not sampling in-
stances at a node, but by sampling potential splits. A list of all possible splits
is generated, with only a sampled subset of these splits evaluated. This may be
expected to result in a loss of accuracy while reducing execution time, as less
search is performed. Results of the presented experiments show that CLOUDS
generally produces less accurate models than CART and C4.5 on the four data
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Figure 2.1: An example of clustering. Each class of instances in A has been
replaced by a single instance in B. The instance of class + will have weight 9,

and the instance of class * will have weight 5.

sets tested. No comparison of execution time is given.

Clustering and Squashing

Random or semi-random selection of instances for a training set runs the risk
that not all instances will be represented in the sample. Ensuring representation
of all instances requires taking large samples — an undesirable action. An alter-
native to random selection is to deliberately create a training set that represents
every instance of the full training set. This can be achieved with clustering
algorithms (e.g. [32, 79, 8, 26]).

Clustering algorithms analyse a set of instances with the aim of identifying
groups of similar instances. Each group can be represented in a training set by
a single weighted instance, where the weight represents the number of instances
in the group. For example, consider Figure 2.1.

A common way of performing clustering is with the k-means method. This
method groups instances into k clusters, where £ is user-specified. The position
of a cluster may change dynamically as more data is analysed, with instances
being assigned to the cluster “closest” in the attribute space. Many clusters

may exist for one class, and clusters may consist of only one instance.
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Many clustering algorithms, such as k-means, are suitable for data sets that
contain continuous attributes only. However, much research has been performed
into clustering that incorporates discrete attributes [52, 47].

The benefit of clustering is obvious. If a data set contains distinct groups
of instances, representing these groups as a single instance should save a con-
siderable amount of execution time. However, there are a number of problems
associated with clustering. First, clustering algorithms are expensive, often hav-
ing computational complexity of O(n?) [34]. Research has been performed to
reduce this cost, including approaches incorporating clustering into database
management systems [36]. If data can be extracted from a database already
clustered, the problem of computational complexity is reduced. Second, for an
algorithm to be able to use clustered data, it must be able to take weights
of instances as input. Thirdly, clustering is a form of lossy compression, and
thus the information contained within a clustered data set is less than that of
the unclustered data set. An example of this can be seen in Figure 2.1, where
the boundaries of each clustered class have been lost. Variances of attributes
and co-variances between attributes have also been lost. This may increase
the possibility of inferring an erroneous decision boundary, leading to incorrect
classification of future instances.

Data squashing [34, 82] can be viewed as a variant of clustering, designed to
reduce information loss. Whereas clustering replaces a group of instances with
a single weighted instance, data squashing replaces a group of instances with
many weighted instances.

Data squashing explicitly attempts to reduce the number of instances of a
data set while keeping many properties of the data intact. This is achieved
by ensuring moments of the squashed data are similar to those of the original
data set. Moments are calculated on a region-by-region basis, where regions are

determined through the application of hyper-rectangles or data spheres to the
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instance space.

Other methods of reducing data set size exist, such as that presented by
Vucetic and Obradovic [98]. Their method uses a compression algorithm to
reduce the number of bits required to represent a data set, in turn reducing the
resources required to store and transfer data. However, the method requires

continuous attributes to be discretised.

Learning Curves

One way in which sampling is often applied is with learning curves. A learning
curve is a plot of accuracy against training set size. Such a plot can be used to
determine the smallest training set size for which adding extra instances does
not improve accuracy.

Substantial research has been performed into estimating learning curves.
Some methods involve fitting a function to a number of small sample sizes such
that the curve can be extrapolated [42, 49]. Others attempt to determine a lower
bound on the number of instances required [35], or an upper bound on potential
accuracy [53].

Possibly the most promising method is that of progressive sampling [84],
where iteratively larger samples are taken until confidence that accuracy will no
longer improve is reached. This has been further studied to eliminate the need
to build models below a data set dependent size [50].

However, the problem with learning curves is that they cannot guarantee
accuracy will be reached that is sufficiently similar to that obtainable with the
full training set. It has been suggested that this is not possible as the accuracy
represented in learning curves does not plateau, but tapers [83, 71]. Therefore,
one of the assumptions of many learning curve algorithms — that a point will

be reached after which accuracy does not increase — may be violated.
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2.2.3 Type of Algorithm

Rather than modifying algorithms to handle large data sets, it may be sensible
to look at different types of algorithms that may be more suited to large data
sets. This section discusses two ways in which algorithms may be more suited

to large data sets.

Incremental Algorithms

One of the problems with many learning algorithms is that incorporating new
data into a model requires discarding of the current model and starting again.
Given that execution time can be large, this is certainly undesirable. Incremental
algorithms can alleviate the problem.

An incremental algorithm is one that modifies an existing model when pre-
sented with new data. Kalles and Papagelis [61] discuss incremental learning
within the context of decision trees, and show that incremental decision tree
algorithms can have similar performance to algorithms which process all data at
once. VFDT [31] and CVFDT [57] are also incremental decision tree algorithms,
with the latter having the added advantage that previously learned concepts of

the tree can change if the data changes over time.

Bias plus Variance Decomposition

Another potential way in which a different type of algorithm may be useful
with large data sets is in the bias plus variance decomposition of error [59].
The bias plus variance decomposition provides an insight into how much of
the error is due to randomness of the training data, and how much is due to
systematic issues with the learning algorithm. It is plausible that as training
set size increases, error due to randomness of the training data should decrease,
leaving error dominated by systematic issues — or bias. However, no previous

study has investigated this.

26



2.3 Summary

This chapter has presented a review of literature relevant to the thesis. Problems
faced when using classification learning algorithms with large data sets have been
discussed, as have methods that attempt to remedy these problems. Scaling up
algorithms to handle large data sets does not work well. Scaling down data sets
introduces risks that are often not addressed or not well investigated. Regardless
of these drawbacks, such methods for handling large data sets are often used.
There has been little research performed into whether the type of algorithm
required when learning from large data sets differs to that required when learning
from small data sets. Specifically, the effect of large data sets on the way the bias
plus variance decomposition of classification error changes has not been studied.
Sampling is possibly the most commonly used method of scaling down data sets,
but no study into the comparative effects of different types of sampling methods
has been performed. Learning curves are often used in an attempt to reduce
execution time. However, there is little evidence to suggest that they can be
effectively used to reduce execution time while reliably producing models with

accuracy comparable to that obtainable without reducing data set size.
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Chapter 3

Bias and Variance

One of the many problems facing data mining is the abundance of data. Within
the classification learning context, more data rarely leads to the creation of less
accurate models [71, 83]. It can, however, cause classification learning algorithms
to take a substantial time to create models.

This can be at least partially attributed to the fact that many popular clas-
sification learning algorithms (or algorithms on which they were directly based)
were created when the average data set size was what is now considered quite
small. For example, C4.5 [88] was published in 1993, and its predecessor ID3
[87] first appeared in 1986. Classification and Regression Trees [13] was pub-
lished in 1984. Since then the amount of data collected and stored has grown
enormously. Whereas data sets now often consist of millions of instances, at the
time these algorithms were created, typical data set sizes ranged in the hundreds
to thousands of instances.

It is reasonable to believe that this lack of data may have caused authors
to unintentionally predispose their algorithms toward learning from small data
sets. If larger data sets had been available, such algorithms may have been
developed differently. Even so, if data sets available now had been available

then, creating, testing, and adapting an algorithm would have been very difficult
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with the technology of the time.

However, execution time may not be the only way in which such influence
manifests itself. It is plausible that one of the legacies of these circumstances is
that the learning process of such algorithms is inclined toward small data sets.
If this is true, it could then be expected that these algorithms do not perform as
well on large data sets as they might if they had been developed with large data
sets. This implicit and unrealised constraint on model-building performance
could materialise as longer execution time, decreased model descriptiveness, or
decrease in accuracy.

One way in which potential performance gains can be tested is to investigate
the bias plus variance decomposition of classification error. This decomposition
allows analysis of error attributable to randomness in the selection of the data
and error attributable to systemic conflicts between the algorithm and the learn-
ing task. Such an investigation may also provide insight into which of these two
types of error future development of algorithms should focus on minimising. A
more detailed discussion of the decomposition appears below.

Experiments were performed to investigate two aspects of the bias plus vari-
ance decomposition: first, how decomposed error changes with larger training
sets, and second, how changing the expected level of bias management affects

models built with larger training sets.

3.1 Investigation of the Effect of Training Set
Size on Bias and Variance

The machine learning field of classification prediction aims at producing a model
that describes the concepts underlying a given data set, such that one of the
attributes of new data (the “class”) can be predicted through analysis of other

attributes. Such a model is created by a classification learning algorithm.
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When used to classify previously unseen instances, inferred models often have
error. This section investigates how the nature of this error, in terms of the bias
plus variance decomposition, is affected by the size of the training set used to

infer a model.

3.1.1 The Bias plus Variance Decomposition of Classifi-

cation Error

To fully describe the underlying concepts, a data set must contain enough com-
binations of values across all attributes such that there can be absolutely no
ambiguity as to which class a particular combination of attribute values be-
longs. It is rarely the case that a data set fulfills this requirement, and it is
often not possible to meet this requirement when continuous values form part
of the data set. A data set is therefore usually only a sample of the underlying
concept, and a particular data set one of many possible data sets derivable from
the underlying concepts.

Statistical inference methodologies attempt to draw conclusions regarding a
population from a sample of that population [76]. To mitigate the chance of ob-
taining an unrepresentative sample, statistical methodologies select the sample
from the population randomly. Also, since only a sample of the population is
used, error can be expected. Statistical methodologies define the notion that this
error can be decomposed into two parts: error due to systematic inadequacies in
the learning process, and error due to the fact the sample was taken randomly.
When measured over all possible samples of a given size, these causes of error
are known respectively as bias and variance.

These statistical properties of error can be closely related to error in predic-
tive classification. Bias can be viewed as those instances consistently incorrectly
classified by multiple models trained on different samples, whereas variance can

be viewed as instances occasionally incorrectly classified. Obviously, instances
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consistently correctly classified do not contribute to error.

Two problems arise, however. First, it is often impractical within a classifi-
cation prediction context (as it also is within a statistical context) to create a
model from every possible sample of a given size. Therefore, bias and variance
measurements can only estimate the true bias and variance. The more samples
that are used, the more accurate the estimates become.

Second, bias and variance were originally defined for domains such as es-
timating means or evaluating regression models — domains in which the at-
tribute to be estimated is continuous. Methods for calculating continuous bias
and variance do not directly map to discrete classification. There is no sin-
gle method to calculate bias and variance within a discrete context, and many
methods for calculating these measures within a predictive classification context
[67, 66, 9, 95, 43, 58, 101, 59] have been proposed. These methods are discussed
in Section 3.1.3.

Bias and Variance Management

Levels of bias and variance are highly dependent on the data set and number of
training instances used. It is therefore difficult to make predictions of expected
levels of bias and variance. It is possible, however, to make predictions regarding
the relative level of management of these factors when comparing algorithms.
Whereas bias and variance refer to a decomposition of measured error, relative
levels of bias and variance management refer to an expectation of the degree to
which an algorithm focuses on reducing bias or variance with respect to another
algorithm.

Take the following examples of bias management:

e Increasing expressive power allows an algorithm to describe more concepts.
Thus, the potential to build a model that adequately represents concepts

underlying the data is increased. It could be expected that an algorithm
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with greater expressive power has a greater level of bias management.

e Incorporating boosting [91] into an algorithm has been shown to reduce
bias [4]. It can therefore be expected that a version of an algorithm that
uses boosting employs greater bias management than a version that does

not.

Determining relative levels of bias management may not always be as straight-
forward as the above cases. For example, comparing a decision tree algorithm to
a decision rule algorithm is much more difficult. Such algorithms are often able
to express the same concepts, but due to the way in which these concepts are
inferred and employed, a decision tree algorithm and a decision rule algorithm
may not necessarily produce precisely the same bias error.

The relative level of variance management is easier to determine than bias
management. This can be found by comparing the susceptibility of algorithms to
small changes in the data. For example, with default settings, C4.5 is relatively
robust to small changes in data. Changing C4.5’s settings so that fewer instances
are required to branch a decision node makes the algorithm more susceptible to
a small change in the data. Therefore, C4.5 modified to require fewer instances
per branch can be considered as having less variance management than default
C4.5. Similarly, Naive-Bayes classifiers are known to be altered very little by
small changes in the data, and can therefore be considered to have high variance
management.

It is important to understand the distinction between bias and variance,
and management of bias and variance. Bias and variance are measured quan-
tities. Bias and variance management are expectations of relative performance.
Comparing the levels of management of, for example, bias, does not necessarily
imply that the algorithm with higher bias management will always have lower
bias. Although it can be expected that the algorithm with higher bias manage-

ment will tend to have lower bias, it may not have lower bias for all learning
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tasks. However, given measurements of bias, it is reasonable to conclude that

the algorithm with lower bias is likely to have higher bias management.

3.1.2 Justification

The above discussion does not address why an investigation of bias and variance
may be useful within a discrete predictive classification context. The reason is
thus: within the classic statistical context of a continuous domain, variance can
be expected to be a significant proportion of error given a small sample of the
population [76]. As the size of the sample increases, variance can be expected
to decrease. No assumption is made regarding the behaviour of bias as larger
samples are used. Although expectations of bias and variance within continuous
statistical domains may hold for continuous predictive classification, there is no
evidence that they hold for discrete predictive classification. It would be useful
to be able to characterise how discrete predictive classification algorithms behave
in terms of both systematic and random error, especially with larger training
sets.

An associated point is that many common classification prediction algorithms
were created when the number of instances in training sets was much smaller
than is common today. Since it is known that variance is a large component of
error with small samples, it is reasonable to expect that such algorithms may
focus on variance management. If variance becomes a negligible proportion of
error with large training sets, these algorithms may be underperforming when
learning from large training sets as they do not focus on the then more important
task of bias management. Evidence of this may provide an impetus and justifi-
cation for the design of algorithms that focus on bias management rather than
variance management. Such algorithms may perform poorly on small training
sets, but excel when tackling larger training sets.

The purpose of the research in this chapter is to investigate whether the sta-
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tistical expectations of bias and variance do indeed apply to discrete predictive
classification. Evidence can be collected by examining the bias plus variance
profile of various algorithms at different training set sizes. If these expecta-
tions are confirmed, then this may have a significant impact on the approach
algorithm designers take when trying to solve modern problems. Designing al-
gorithms focusing on bias management would be a major paradigm shift from

the current emphasis on variance management algorithms.

3.1.3 Experiments

Two hypotheses are investigated:
e as training set size increases, variance can be expected to decrease.

e as training set size increases, bias will become a dominating proportion of

total error.

Experiments were performed to evaluate the hypotheses. Experimental de-

sign considerations are addressed below.

Methodology

All experiments were performed using ten times three-fold cross-validation. Thus,
every instance was classified in a test set precisely ten times. This ensures
that results are not influenced by disproportionate representation of selected
instances, as every instance contributes equally to the overall result. Webb
and Conilione [103] show cross-validation provides a more stable estimation of
bias and variance than the “training pool” method introduced by Kohavi and
Wolpert [66].

Sampling of training sets was designed to ensure that larger training set sizes
included all instances in smaller training set sizes. This is desirable as any change

in bias and especially variance can only be caused due to the addition of extra
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instances to the training set, and eliminates the possibility that results could
reflect the effect of sampling a whole new training set. Since the aim of these
experiments is to investigate the effect increasing training set size has on error,

ensuring smaller training sets are subsets of larger training sets is appropriate.

Bias plus Variance Measure

Many definitions have been proposed for measuring bias and variance in a dis-
crete classification learning context.

The most widely used measure is that of Kohavi and Wolpert [66]. Error
is decomposed into bias, variance, and irreducible error, with bias and vari-
ance defined in terms of the squared error between induced classifiers and data.
Variance is considered to always contribute to error, and therefore cannot be
negative. Irreducible error is that which cannot be reduced, and occurs when
instances with the same description have different classes.

The philosophy of this measure is similar to that used in statistical inference,
and is defined as follows:

bias? = % Y [P(Yr =ylz) = P(Yy = ylz)]?

yey

1
variance, = =(1 — > P(Yy = y|z)?)
2 yey

1
irreducible error? = =(1 — Y P(Yr = y|z)?)
yey

where Y is the set of output classes, Yr is a fixed function that maps each
instance x to a class y, and Yy is a hypothesis estimating Y. Note that for
noise-free functions, P(Yr = y|z) equals 1 for a single value of y, and 0 for all
other values. Similarly, for classifiers such as decision trees, P(Yy = y|x) equals
1 for a single value of y, and 0 for all other values.
Then,
bias® = ) bias
z

35



variance = Z variance,
xT

irreducible error” = ) irreducible error’
T

Kong and Dietterich [67] define bias such that a test instance can only con-
tribute to bias or variance, never both. An instance that is most often classified
incorrectly is considered a bias error, with weight 1. Variance is defined as the
difference between total error and bias, with no separate term for irreducible
error. Thus, an instance can have negative variance if it is most often classi-
fied incorrectly, but sometimes classified correctly. Bias and variance are then
determined by calculating the mean bias and variance of all test instances.

Allowing negative variance for an instance has the undesirable property that,
when averaged over all instances, variance can be zero even though variance
for individual instances is not zero. This can give a misleading impression of
measured variance.

Other measures aim at calculating error attributable to bias and variance,
rather than the actual bias and variance themself. James and Hastie [58] take
this approach, defining systematic effect and variance effect, and show Tibshi-
rani’s definition of variance [95] to equate to theirs within the class of classifica-
tion rules. This has been taken further [59], suggesting two measures of bias and
variance should be used — one measuring bias and variance, the other measuring
their effect.

Breiman [9] defines bias and variance such that they can be interpreted as
error due to bias and error due to variance. Webb [101] takes the same approach,
but whereas Breiman defines a separate term for irreducible error, Webb absorbs
irreducible error into bias and variance. However, although these measures differ
theoretically, in this research they are in practice identical, as no two instances
in any data set employed have the same description with differing classes.

Friedman [43] investigates the interaction between bias and variance, and

shows that rather than having an additive effect, they actually have a multi-
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plicative effect. It is therefore possible that reducing variance will increase error.
This can occur regardless of whether variance is permitted to be negative, and
can be explained as follows.

Let bias and variance be viewed as regions of the attribute space in which
error occurs. Bias is then the space in which the most commonly predicted class
of instances in that space is incorrect, and variance is the space in which the
most commonly predicted class is correct. Such areas cannot overlap. However,
the context of a region of variance may determine whether it increases or de-
creases error. For example, consider a variance region that is totally surrounded
by regions in which instances are always correctly classified. In this case, the
variance region can be viewed as introducing error. On the other hand, consider
a variance region that is totally surrounded by bias regions. Then, the variance
region can be viewed as introducing correctness. Reducing variance in such a
region will hence increase error.

Bias and variance were calculated using the Kohavi-Wolpert, Kong and Di-
etterich, and Webb measures. All measures recorded similar results. Therefore,

only the Kohavi-Wolpert measure is reported as it is the most widely employed.

Algorithms

The experiments were aimed at investigating whether variance can be expected
to decrease with increasing training set size. Therefore, multiple algorithms with
differing levels of variance management are employed.

A Naive-Bayes algorithm [70] was chosen as it is very robust with respect to
small changes in data. It can therefore be considered as having high variance
management. Naive-Bayes classifiers can represent only a very strict subset of
concepts — namely, those for which all attributes are independent. However,
attributes frequently are not independent [107]. Naive-Bayes is hence considered

an algorithm with little bias management.
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Three variants of C4.5 were used, since options for controlling the behaviour
of C4.5 allow different levels of variance management to be investigated without
having results affected by changes in the basic algorithm. As pruning has been
shown to reduce variance [4], leaving trees unpruned is an obvious choice for
decreasing variance management. Changing the minimum number of instances
required to create a branch can also be expected to affect variance management
— if fewer instances are required, small changes in data can have greater impact.
This is a decrease in variance management. By default C4.5 requires that all
branches of a node must contain at least two instances. If this condition is
not satisfied, branches are not allowed and the node must therefore be a leaf.
Hence, C4.5 without pruning and with only one instance required in each branch
(hereafter referred to as Unpruned C4.5 Minl1) should further reduce variance
management.

MultiBoosting [101] has been shown to reduce both bias and variance. Multi-
Boost C4.5 was therefore included to provide an algorithm with more variance
management than standard C4.5. This can be expected to still have less variance
management than Naive-Bayes, due to Naive-Bayes’ very high level of variance
management.

The five algorithms employed and their expected bias plus variance profiles

are summarised in Table 3.1.

Sample Size

While selection of sample size is arbitrary, it was deemed that using sample sizes
that were powers of two would be both simple and natural within a computing
context. The smallest sample size was 32. This was chosen as it is the smallest
power of two greater than 30 — the minimum sample size from which it is
recommended statistical inferences be drawn. Since three-fold cross-validation

was used, only two-thirds of the total data was available for training. The largest
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Table 3.1: Algorithms used and their bias plus variance profiles
Algorithm Bias plus Variance Profile

Naive-Bayes Very high variance management, very

little bias management

C4.5 Medium variance management, medium

bias management

MultiBoost C4.5 More bias and variance management
than C4.5

C4.5 without pruning Less variance management than C4.5

C4.5 without pruning, mini- Very little variance management

mum of 1 instance at leaf

sample size was therefore the largest power of two less then two-thirds of the
total data set. For example, the Connect-4 data set contains 67,557 instances.
Using three-fold cross-validation reduces the maximum possible training set size
to 45,038 instances. The largest power of two less than this is 32,768. This is

then the largest sample size employed for this data set.

Data Sets

Data sets were drawn from the UCI Machine Learning repository [7]. Data sets

were required to:

e contain a substantial number of instances. The smallest data set used was

the Adult data set with 48,842 instances.
e be suitable for classification learning

e be publicly available
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Table 3.2: Data sets used

Data Set Number of | Continuous | Discrete | Classes
Instances | Attributes | Attributes
Adult 48,842 6 8 2
Census Income 199,523 7 33 2
Connect-4 67,557 0 42 3
Cover Type 581,012 10 44 7
IPUMS 88,443 60 0 13
Shuttle 58,000 9 0 7
Waveform 1,600,000 21 0 3

A mixture of data sets containing only discrete attributes, only continuous
attributes, and both discrete and continuous attributes were used. Table 3.2
presents a summary of the data sets employed. Although it is difficult to argue
that the data sets used are exceptionally large, they are much larger than those
used in the creation of many algorithms. Time constraints required consider-
ation, and empirical evidence suggested that including data sets much larger
than those used would require an unacceptable and infeasible amount of extra
time. As this study investigates the effects of increasing data set size on bias
and variance, it is the examination of variations in data set size rather than the
absolute magnitude of data set size that is most critical. Also, in order to as-
sess the relative performance of alternative methods, existing learning methods
needed to be applied to the data. The computational demands of this imposed

constraints on the size of the data sets that could be employed.

3.1.4 Results

Graphs show the relation between
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Figure 3.1: Variance of algorithms on the Adult data set

e training set size and bias,
e training set size and variance,
e training set size and the ratio of bias to variance.

Each graph contains results for the five algorithms used, and relates to one data
set.
Note that none of the data sets used contained instances with identical de-

scriptions and different classes. Irreducible error is therefore zero.

Variance

Figures 3.1-3.7 plot the variance component of error against training set size for
the algorithms and data sets used. The graphs show that variance can generally
be expected to decrease with larger training set size regardless of the bias plus

variance profile of the algorithm, providing support for the first hypothesis.

41



Variance

Variance

0.12

0.10

I | I | | I | |
C4.5 ——

MultiBoost —-<--
Naive Bayes --%--

Unpruned C4.5 (3
Unpruned Minl —-m-

0.00
32

64 128 256 512 1K 4K
Sample Size

Figure 3.2: Variance of algorithms on the Census Income data set

—— S[AL'IE)‘B Sy o T
~-- MultiBoost e
0.05 '--%--Nalulivé ]é):gses N .
(- Unpruned C4.5 Ky
--m- UnPruned Minl1 T “of
0.00 L L L L L L L L
32 64 128 256 512 1K 4K 16K

Sample Size

Figure 3.3: Variance of algorithms on the Connect-4 data set
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Figure 3.5: Variance of algorithms on the IPUMS data set
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Figure 3.7: Variance of algorithms on the Waveform data set

44



T |
C4.5 ——

0.17 MultiBoost ——>-- —
Naive Bayes --%--
0.16 Unpruned C4.5 & F

Unpruned Minl X

Bias
(]
—
B
1

- X\ \\:i\ o
0.1 F RO st S~ B
0.10 ! ! ! ! ! P i S
32 64 128 256 512 1K 4K 16K

Sample Size

Figure 3.8: Bias of algorithms on the Adult data set

Bias

Figures 3.8-3.14 plot the bias component of error against training set size for the
algorithms and data sets used. Across all data set used, all algorithms except
Naive-Bayes tend to decrease in bias error as training set size increases. Naive-
Bayes shows a trend in the opposite direction, increasing in bias for all data
sets except Waveform. This may be attributable to the fact that Naive-Bayes
has little bias management, or to the very low variance of Naive-Bayes at large

sample sizes masking less of the underlying bias.

Ratio of Bias to Variance

Figures 3.15-3.21 plot the ratio of bias to variance against training set size. This
may provide insight into whether bias or variance dominates error, and how the
strength of this domination changes as training set size increases. Note that for
the purpose of simplification of scales, results are presented as the proportion of

error attributable to bias. Thus, a value of less than 0.5 represents a domination
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Figure 3.10: Bias of algorithms on the Connect-4 data set
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Figure 3.11: Bias of algorithms on the Cover Type data set
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Figure 3.12: Bias of algorithms on the IPUMS data set
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Figure 3.14: Bias of algorithms on the Waveform data set
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Figure 3.15: Ratio of Bias to Variance of algorithms on the Adult data set

of error by variance, and a value greater than 0.5 represents a domination of error
by bias. Values further from 0.5 equate to stronger domination.

The second hypothesis is that, as training set size increases, bias will become
a larger proportion of error. To evaluate this, it is necessary to compare the ratio
of bias to variance between the smallest and largest training set size across the
seven data sets for each of the five algorithms. If the ratio increases, then bias
becomes more dominant in the final error term. An analysis finds that of the
35 comparisons, 28 support the hypothesis, with 7 against. This is significant
at the 0.05 level using a one-tailed binomial sign test (p = 0.0003).

Further analysis comparing how often the ratio of bias to variance increases
when compared to the ratio of the next smallest training set size also supports the
hypothesis. Table 3.3 shows the number of times the ratio increased (considered
a win) and the number of times it decreased for individual algorithms, and all
algorithms, across all data sets. The result of a one-tailed binomial sign test is

also given, with results considered significant at the 0.05 level. Note that since
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Figure 3.18: Ratio of Bias to Variance of algorithms on the Cover Type data set
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Figure 3.19: Ratio of Bias to Variance of algorithms on the IPUMS data set
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Figure 3.20: Ratio of Bias to Variance of algorithms on the Shuttle data set
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Figure 3.21: Ratio of Bias to Variance of algorithms on the Waveform data set
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Table 3.3: Comparison of increases to decreases of the ratio of bias to variance

Algorithm Win Loss D
Naive-Bayes 73 5 < 0.0001
C4.5 49 29  0.0154
Unpruned C4.5 52 26 0.0022
Unpruned C4.5 Min 1 49 29  0.0154
MultiBoost C4.5 51 27 0.0044
All 274 116 < 0.0001

the hypothesis is that the ratio will increase, draws are considered a loss. Note
also that this test violates one of the assumptions of the sign test in that not all
measurements are independent. Thus, this test should be considered as broadly
indicative only.

Analysis of the ratio of bias to variance at the largest training set size shows
that bias dominates error in all but 4 of 35 cases. The exceptions are the
three non-boosted versions of C4.5 on the Cover Type data set, where variance
dominates error, and MultiBoost C4.5 on the Shuttle data set, where bias and

variance are equal.

3.1.5 Summary

The above results show clear trends for both bias and variance to decrease as
training set size increases. This supports the first hypothesis. There is also a
general trend for bias to become a greater proportion of error with larger training
sets, providing support for the second hypothesis.

It is interesting that unlike the trend for variance to decrease, bias does not
decrease for every algorithm. The algorithm for which bias does not decrease

is Naive-Bayes, the algorithm with the least expected bias management. Con-
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trarily, Unpruned C4.5 Min 1, an algorithm with low expected levels of variance
management, still shows a decrease in variance. This implies that although vari-
ance may be expected to “naturally” decrease regardless of the level of variance
management, the same is not true of bias.

This result, combined with evidence supporting the hypothesis that bias
becomes a larger proportion of error, suggests that managing bias should be

considered more important than managing variance as training set size increases.

Effect of Training Set Size on MultiBoost Error Reduction

Since MultiBoosting has been shown to reduce both bias and variance [101],
it can be expected that MultiBoosting should have less total error than C4.5.
The results show that this is in general true. It may therefore be interesting
to compare how much of this error reduction is attributable to both bias and
variance at small and large training set sizes.

At the smallest training set size, MultiBoost has less bias than C4.5 on five
of the seven data sets, resulting in a mean reduction of 4.48 per cent of the C4.5
error. MultiBoost also has less variance on five data sets, resulting in a mean
reduction of 6.44 per cent of the C4.5 error. However, bias and variance are
reduced simultaneously for only three data sets. This results in the mean total
error reduction of MultiBoost over all data sets being only 1.72 per cent. Since
only three data sets show a decrease in both bias and variance, little is to be
gained from calculating the proportion of error reduction attributable to each.

At the largest training set size, MultiBoost has less bias than C4.5 on six
of the seven data sets, resulting in a mean reduction of 9.85 per cent of C4.5
error. MultiBoost has less variance on only three data sets, resulting in a mean
reduction of 3.10 per cent of C4.5 error. Bias and variance are reduced simul-
taneously on only two data sets. This results in a mean total error reduction of

MultiBoost over all data sets of only 0.71 per cent.
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This analysis suggests that MultiBoost is more effective at reducing error
with smaller training sets than it is with larger training sets. Error reduction is
due primarily to a reduction in variance with small training sets, and a reduction

in bias with large training sets.

3.1.6 The Relation Between Variance Management and

Bias Management

At this point it may seem that management of bias and variance are related
so that approaches to increase one will result in reduction of the other. This
hypothesis was evaluated with respect to the experiments by analysing the effect
altering C4.5 had on bias and variance. The bias and variance of each of the
three modified versions of C4.5 (MultiBoost, Unpruned C4.5, and Unpruned
C4.5 Minl) were compared to the bias and variance of default C4.5. The number
of times the signs of the differences differed (i.e. an increase in bias resulted in a
decrease in variance or vice versa) was 167, compared to 62 times where the signs
were the same. The 29 occasions where there was no difference in at least one
of bias or variance were ignored. A one-tailed binomial sign test (p < 0.0001)
indicates that there is a significantly greater chance that a modification to a
learning algorithm that results in a decrease in bias or variance will result in an
increase in the other as opposed to both increasing or decreasing in unison.
This could be seen as justification for not focusing on bias management in
preference to variance management with large data set sizes. However, while
the effects on bias and variance tend to differ in direction they also differ in
magnitude. The mean absolute difference between the variance of default C4.5
and the modified versions was 0.0178. The mean absolute difference between
the bias of default C4.5 and the modified versions was 0.0065. The effect on
variance being greater than bias is confirmed by a one-tailed matched-pair t-

test (p < 0.0001). This result may reflect the relatively small sample sizes
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employed in this research. It also adds weight to the argument that current
classification prediction algorithms reflect their small data set origins primarily
through incorporation of methods for variance management.

This analysis could be argued to counter the proposal that with larger data
sets bias management is more important than variance management, as reduc-
ing variance management leads to greater increases in variance than reductions
in bias. However, three points must be considered. First, the fact that reducing
variance management results in a greater increase in variance than decrease in
bias, and thus an increase in total error, can be expected. Since it is proposed
that many algorithms’ effectiveness occurs mainly due to focusing on variance
management, it is to be expected that limiting this ability should increase er-
ror. Second, the results empirically show that bias increasingly dominates error.
Reducing variance further will only amplify this domination. Finally, it is not
suggested that variance management is unimportant or unnecessary, but rather
that bias management becomes increasingly important with increasing training
set, size. Therefore, algorithms that focus on variance management may not be

able to take full advantage of large data sets.

3.2 Investigation of Bias Management

The previous experiments indicated that bias management may be an important
factor in the success of algorithms when learning from large training sets. These
experiments suggest that with larger training set sizes, an algorithm with more
bias management could be expected to be more accurate than one with less bias
management.

It would therefore be useful to investigate methods with which this might be
achieved. It is important to investigate the ability of a potential bias reduction
method to reduce bias when using large training sets. However, before this

is performed, a further understanding of how bias and variance are created is
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required.

3.2.1 The Cause of Bias and Variance

Although the process of measuring bias and variance can be defined, the cause
of each is not fully understood. It is reasonable to expect that variance is caused
by the randomness of the sample, as it is with statistical inference. However,
what causes an algorithm to generally have high bias? It is likely a deficiency of
the model-building algorithm, but in what way? Is it due to lack of expressive
power? Is it due to processing attributes one at a time instead of many at a
time? Is it due to trying to fit too many model parameters to the data set? Is
it all of these, or is it something else entirely?

This can be partially answered by again viewing bias and variance as regions
of the attribute space where error occurs (see Section 3.1.3).

There are a number of ways in which labelling of an area of attribute space
can lead to consistent incorrect classification of test instances. These are: noise;
non-detection of a concept; false detection of a concept; and erroneous extrapo-

lation of a concept. A discussion of each follows.

Noise

Bias can be caused by noise. Consider a heavily populated data set in which
an area is densely populated with instances of one class. Now consider a single
instance within this area that does not have the same description as any other in-
stance, and is also labelled a different class. If this instance occurs in the training
set it is likely to be ignored, as many algorithms would consider it unreasonable
to make concessions for a single instance in the middle of overwhelming support
for a different class. If, given a different selection of training and test data,
the instance occurs in the test set, it will constantly be misclassified. Such an

instance can be considered noise, and could be caused due to inaccurate data
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collection or an anomaly during data collection. Noise is extremely difficult to

counteract, and often little can be done to remedy this problem.

Non-Detection of a Concept

An alternative explanation to the above is that the single instance is the sole
representative of a rare concept. In this case, the problem is not noise, but non-
detection of a concept. However, the support for such a concept is quite small,
and there is likely insufficient evidence to justify introducing a new concept into
the model. Alternatively, there may be a number of instances spread throughout
a densely populated area in such a fashion that no reasonable way of grouping
these instances exists with a given algorithm. These instances will be drowned
out by surrounding instances, and in effect treated as noise.

Such problems can be mitigated by relaxing constraints on the minimum
evidence required to introduce a new concept to the model. This can be expected
to result in an increase in variance error, however, and overfitting is more likely to
occur. Overfitting can be viewed as variance error since pruning (which reduces

overfitting) has been shown to reduce variance [4].

False Detection of a Concept

A third way in which bias can be introduced is through false detection of a
concept. In this case, there is sufficient evidence to support introduction of
a new concept, but such a concept does not actually exist. Such occurrences
can be expected to be rare, since to produce a bias error it would be necessary
that training sets include evidence for such a concept, but test sets do not. If
sufficiently large training and test sets are drawn from the same distribution this

situation should rarely occur in practice.
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Figure 3.22: Extrapolation of a concept to cause bias

Erroneous Extrapolation of a Concept

The final method of introducing bias is erroneous extrapolation of a concept.
With many algorithms, areas of the hypothesis space which contain no instances
are still assigned a class label. Consider Figure 3.22: the T represents a hypo-
thetical test instance, while the +’s and *’s represent, opposing classes of training
instances. Given this training set, it is reasonable to infer the decision boundary
shown by the dashed line. Therefore, instances with = > 4.5 are classified *.
However, evidence supporting this exists only between 3 < y < 4. In other
words, the representation of the concept that produced instances of class * has
been extrapolated to include regions containing no evidence. When the test
instance T is classified, it is labelled *, even though there is greater evidence for
T to be labelled +. This will result in a bias error for instance T, as well as any
similar instances, if such instances are of class 4. Bias errors could also exist
for instances of class + with > 4.5 and y < 3, or instances of class * with
xr < 4.5 and 3 < y < 4. Assuming a training set is a reasonable sample of the
underlying concepts, such situations could occur quite frequently.

A remedy for erroneous extrapolation of concepts is decision tree grafting
[100]. Grafting adds nodes to an inferred tree so that empty regions can be

labelled independently from the regions from which they were extrapolated. The
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class assigned to the empty region is then based on global rather than local data.
For example, in Figure 3.22, a potential region for grafting could be x > 4.5,
presently assigned the label *. This region could be partitioned into y < 4.5 and
y > 4.5, separating a populated area of this region from an empty area. If this
empty area (y > 4.5) is then labelled considering global data, its label could be
changed to +.

Grafting has been claimed to reduce both bias and variance error [100].
However, grafting has not been investigated within the context of large data

sets.

Representational Power

It may also be reasonable to expect that bias errors could be introduced due to
a lack of representational power. For example, consider two algorithms. The
first represents concepts with decision surfaces orthogonal to the axes. The
second represents concepts with decision surfaces that may be either orthogonal
or oblique to the axes. Since the hypothesis space of the second algorithm is
a super-set of the hypothesis space of the first algorithm, it may be reasonable
to expect that the second algorithm has greater bias management as it can
concisely represent more concepts than the first algorithm.

Similarly, an algorithm with greater representational power may also have
greater variance, due to the necessity of selecting from a greater number of
potential hypotheses. As shown in Section 3.1.6, an increase in variance can be
expected to result in a decrease in bias.

However, increasing representational power may not necessarily decrease
bias. For example, consider a data set that contains a single concept that is
oblique to the axes. The second algorithm should be able to easily represent
this concept with a single decision surface, while the first must approximate

the concept with many orthogonal decision surfaces. In other words, the second
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algorithm is able to exploit its greater representational ability over the first algo-
rithm. However, because the first algorithm must approximate the concept with
many decision surfaces, the actual surfaces inferred will be highly dependent
on the precise data used. Error of the first algorithm can thus be expected to
be caused by variance rather than bias. Therefore, it is plausible that increas-
ing representational power may actually be an exercise in increasing variance

management, not bias management.

3.2.2 Experiments

Two sets of experiments were performed to investigate potential means of re-
ducing bias when using large training sets.

The first set of experiments investigate how the bias reduction potential of
decision tree grafting is affected by increasing training set size. Grafting has the
advantage that the way in which it reduces bias is understood. It is believed
that it will be beneficial to investigate a methodology that is understood, as it
may be possible to analyse why the resulting behaviour occurs. The version of
grafting used employs the all-tests-but-one partition [100].

The second set of experiments investigate whether increasing representa-
tional power does in fact result in a decrease in bias error, rather than variance
error, as reasoned above. To do this, it is necessary to use an algorithm with
which representational power can be easily restricted to a subset of the default
set. OC1 [94] is one such algorithm, in that, by default, oblique decision bound-
aries are allowed, but can be restricted to axis-orthogonal boundaries only. At
each node, default OC1 finds the best axis-orthogonal boundary and the best
oblique boundary. The utility of these boundaries is then compared to deter-
mine the final boundary. Restricting OC1 to axis-orthogonal boundaries simply
eliminates the search for the best oblique boundary. OC1 limited to inferring

axis-orthogonal boundaries only will be hereafter referred to as orthogonal OC1.
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Note that although adaptive resampling algorithms such as Arc-X4 [9], Boost-
ing [41], and MultiBoosting [101] have been shown to reduce bias, the way in
which they do so is not entirely clear. Such methods also dramatically increase
execution time, and are therefore deemed unsuitable for the purposes of these

experiments.

Methodology

The methodology used for these experiments is the same as that of the previous

experiments (see Section 3.1.3), performing ten-times three-fold cross-validation.

Data Sets

The same data sets as previous experiments were used for the grafting experi-
ments. However, since OC1 uses only continuous attributes, only four data sets
(Connect-4, TPUMS, Shuttle, and Waveform) were suitable. To compensate,
three artificial data sets and an additional real-world data set were introduced

for OC1. These are described in Table 3.4.

Training Set Size

The emphasis of these experiments is on the effect of large training sets. It is
therefore sufficient to compare bias and variance of algorithms at the largest
possible training set size only, being two-thirds of the whole data set. This
methodology was followed with OC1, as some experiments took up to 15 days
for one data set. As such, performing numerous experiments with smaller data
sets would require an unacceptable amount of time.

Grafting experiments did not require such large execution time. This allowed
the opportunity to explore many training set sizes, so as to create a clearer
picture of how the bias and variance of grafting changes with larger training

sets. Training set sizes used for grafting experiments were determined in the
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Table 3.4: Description of artificial data sets created

Name

Attributes

Classes

Concept

Distinct Boundary
Fuzzy Boundary

Random Binary

Sleep (real world)

2
5

16

13

2
2

63

Classes separated by y = x

Each class centered around a
point in 5-dimensional space,
with attribute values selected
randomly within a specified stan-
dard deviation

Each attribute is binary. Each
possible combination of attribute
values allocated a random class.
Attribute values selected ran-
domly, and assigned the class
with the matching attribute pat-
tern.

Unknown
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Figure 3.23: Bias and variance of Grafting and C4.5 on the Adult data set

same manner as previous experiments (see Section 3.1.3).

3.2.3 Results
Bias Reduction by Grafting

Figures 3.23-3.29 show results comparing bias and variance of C4.5 with grafting
and default C4.5 for all training sets used.

At the smallest training set size, grafting has greater bias than default C4.5
for six of the seven data sets. As training set size increases the difference in bias
between grafting and C4.5 decreases. At the largest training set size, default
C4.5 and grafting have identical bias for the Census Income and Waveform data
sets. Of the remaining data sets, grafting has less bias than default C4.5 on two
data sets, and greater on three. The difference in bias at the largest training set
size is never greater than 0.0007. Over all training sizes and data sets, grafting
results in a decrease in bias on 31 occasions, an increase on 48, and no difference

on seven.
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Figure 3.24: Bias and variance of Grafting and C4.5 on the Census Income data
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Figure 3.25: Bias and variance of Grafting and C4.5 on the Connect-4 data set
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3.26: Bias and variance of Grafting and C4.5 on the Cover Type data set
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Figure 3.27: Bias and variance of Grafting and C4.5 on the IPUMS data set
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Figure 3.28: Bias and variance of Grafting and C4.5 on the Shuttle data set

0.09 T T T T T 1 1T . T T 1
\ (4.5 Variance ——
0.08 v Grafting Variance --%-- -
\ (4.5 Bias --%--
0.07 R\ Grafting Bias @3- ]
0.06 | \ .
0.05 .

Bias and Variance

64 128256512 1K

4K 16K
Sample Size

64K 256K 1024K

Figure 3.29: Bias and variance of Grafting and C4.5 on the Waveform data set
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A possible explanation for this behaviour lies in the fact that adding instances
to the training set can only reduce the amount of empty attribute space. If new
training instances lie outside the boundaries of the space occupied by existing
instances, the amount of empty space will be reduced. This reduces the size of
regions where grafting can potentially alter the class, which in turn reduces the
opportunity for grafting to have an effect. Similarly, this will also decrease the
likelihood of test instances occurring in empty training regions, thus reducing
the number of test instances that can be affected by grafting.

The results confirm that grafting reduces variance. C4.5 had greater variance
than grafting on 49 occasions, less on 34, and equal on two. The way in which
grafting reduces variance can be explained as follows. As stated previously,
variance occurs in regions to which models built using different training sets
have assigned different classes. Grafting affects regions in which no training
instances lie. These two types of regions can overlap when different concepts
are extrapolated into the same empty region over different training sets. This
overlapping can occur with similar training data if, for example, the order in
which decision boundaries are inferred differs across training sets. Figure 3.30
shows how this can occur. The figure shows three concepts: * centered around
(2,2); + centered around (5,5); and X centered around (6,1). T represents a
potential test instance. The test instance lies in an area into which one of the
concepts must be extrapolated.

It is possible that grafting’s use of global evidence acts as a stabilising in-
fluence on extrapolated areas, causing the class assigned to these regions to be
consistent over training sets. In this example, the test instance T would then
be consistently classified as class *, resulting in variance reduction either by re-
ducing error or converting variance to bias, depending on the correct class of T.
This behaviour may also explain why the bias of grafting is often higher than
default C4.5.
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Figure 3.30: How small changes in data can affect extrapolation. Data sets
B and C differ from data set A by movement of one instance only. Dashed
lines represent the first decision boundary inferred, and dotted lines the second.
Note that a small variation in data causes a change in assigned class in the area

r <35,y >3.5.

The Effect of Increasing Representational Power

Table 3.5 shows results comparing the bias, variance, and total error of default
OC1 and orthogonal OC1. Remember that due to the time taken to run OC1,
these experiments were performed at the largest possible training set size only.

The results show orthogonal OC1 has higher bias than default OC1 on four
data sets, and lower bias on only one. Variance of orthogonal OC1 is lower on
five data sets, and higher on two. Although these results show no statistically
significant trend, they suggest that increasing representational power will lower
bias and raise variance.

The results for the Distinct Boundary data set are interesting. Distinct
Boundary is the only data set for which both bias and variance are greater for
orthogonal OC1 than default OC1. The underlying concept of this data set is
y = x, and therefore should be approximated very well by default OC1. The
increase in variance with orthogonal OC1 suggests that inferred decision bound-
aries change given different training sets. This can be expected from orthogonal

OC1 as it must approximate the concept underlying this data set. However, the
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Table 3.5: Comparison of bias and variance for default OC1 and orthogonal OC1

Default Orthogonal only
Data Set Bias  Variance Error Bias  Variance Error
Cover Type 0.0269 0.0442 0.0711 | 0.0277 0.0395 0.0672

Distinct Boundary || 0.0002  0.0003  0.0005 | 0.0004  0.0005  0.0009
Fuzzy Boundary 0.0011  0.0009  0.0020 | 0.0011  0.0009  0.0020

IPUMS 0.0568  0.0508  0.1076 | 0.0576  0.0500  0.1076
Random Binary 0.0000  0.0001  0.0001 | 0.0000  0.0004  0.0004
Shuttle 0.0002  0.0002  0.0004 | 0.0001  0.0001  0.0002
Sleep 0.1767  0.1556  0.3323 | 0.1853  0.1504  0.3357
Waveform 0.0087  0.0075  0.0162 | 0.0087  0.0073  0.0160

increase in bias with orthogonal OC1 also shows that even with decision bound-
aries changing across training sets, some instances are consistently misclassified.

Analysing the total error for each data set is also interesting. Orthogonal
OC1 is more accurate than default OC1 on three data sets and less accurate on
three, with two ties. It is possible that this is due to some data sets favouring
orthogonal decision boundaries, although it must be remembered that default
OC1 infers orthogonal decision boundaries as part of its induction process.

It may be that the occasional loss of accuracy of default OC1 is due to the
number of parameters used to determine the split at a node. At each node in
the decision tree, orthogonal OC1 must fit one parameter — the cut point of
an attribute. Default OC1 requires fitting of d + 1 parameters, where d is the
number of attributes. It is plausible that fitting these extra parameters may
introduce error.

An alternate explanation is that allowing oblique cuts increases the chance
of underfitting the data. Whereas overfitting occurs when too many decision

boundaries are inferred, underfitting can occur when too few boundaries are
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Figure 3.31: How oblique decision boundaries can cause underfitting.

inferred. Consider Figure 3.31.

Part A of the figure shows training instances of two classes from three dis-
tinct concepts. The two T’s represent potential test instances of class +, and S
represents a potential test instance of class *. Part B shows an oblique decision
boundary inferred on the training instances. This boundary is optimal given the
training data, and thus would be selected as the boundary to use. However, this
boundary does not adequately represent the concepts, and results in misclassifi-
cation of the test instances. Part C shows decision boundaries inferred using the
same data, but with axis-orthogonal boundaries only. The test instances will be

correctly classified.
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This phenomenon could also explain why default OC1 had greater error for

some data sets than orthogonal OC1.

3.2.4 Summary

The experiments investigated two potential methods of reducing bias when learn-
ing from large training sets. The results of experiments concerning decision tree
grafting show that the difference in bias error between grafting and default C4.5
decreases as training set size increases. At the largest training set size, the bias
of grafting is greater than that of default C4.5 more often than it is less. The
results also call into question the ability of grafting to systematically decrease
bias.

The results of experiments concerning representational power show that in-
creasing representational power rarely relates to an increase in bias, and often
relates to a decrease in bias. However, the results also show that increasing
representational power leads to an increase in total error just as often as it leads
to a decrease.

Due to the fact that the results do not show these methods to consistently
reduce bias, the results do not offer enough evidence to draw conclusions as to
whether an algorithm with lower expected bias produces more accurate models
when learning from large training sets. However, the results do show that the
behaviour of bias reduction mechanisms may alter with increased training set
size.

It is reasonable to expect that an algorithm with extremely low variance
management may produce models with extremely low bias. Such algorithms
could be achieved by paying minimal attention to the data, creating a model al-
most totally randomly. However, the practicality of this method is questionable.
An algorithm that minimises data analysis would require splits to be determined

without the use of a measure of the utility of a potential split, as using such a
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measure would increase the chance of introducing bias. This then permits the
possibility of creating trees where the number of leaf nodes equals the number
of training instances. A stopping condition such as node purity cannot be used
as this requires analysis of the data.

It would also be required that an algorithm have no limit on tree depth, as
this could introduce bias toward smaller training sets. Therefore, building can
only cease when a node contains a single instance, and further branching would
be nonsensical. Each model would therefore classify every training instance
correctly. Such an algorithm would produce unwieldy models at best. Pruning
could not be employed, as this again requires analysis of training data. The
lack of systematic generalisation may reduce bias, but is likely to result in each
model performing poorly on unseen instances.

Previous research has shown that committees of semi-random models per-
form with accuracy similar to AdaBoost [12]. Additional research has been
performed into randomising the model building process, taking different ap-
proaches toward introducing randomness [10, 27, 54, 2]. However, each of these
methods use randomisation as only part of the inference process. Systematic
methodologies are still employed, and thus these methods are not applicable for
minimising bias.

Breiman [12] showed that the individual models forming committees are
strong independently, where strength is a measurement of accuracy. Given the
requirements of an algorithm that attempts to minimise bias through randomi-
sation as discussed above, it is unlikely that the individual models discussed
above will be strong. Boosting [41] has been shown to create a strong classifier
from weak individual models by reweighting training instances according to cor-
rect or incorrect classification [73]. As noted above, bias minimisation models
will have zero training set error, making Boosting unsuitable. It is therefore

doubtful that committees of random trees will produce an acceptable classifier.
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3.3 Conclusions

Experiments were performed to investigate the effect of training set size on vari-
ance and on the ratio of bias to variance. The results provide a clear indication
that as training set size increases variance can be expected to decrease regardless
of the expected bias plus variance profile of the classification learning algorithm.
Bias can also be expected to decrease with larger training sets, although the
reverse was true with one algorithm that has little bias management. The re-
sults show that as training set size increases it can be expected that bias will
become a larger proportion of total error. Together, these results suggest that
as training set size increases, bias management becomes increasingly important.

Experiments were also performed to investigate two methods of reducing
bias. Results show that decision tree grafting reduces variance, but becomes
less effective as a bias reduction mechanism as training set size increases. The
results also indicate that grafting may reduce bias only for small training sets.

Results also show that increasing the representational power of an algorithm
may be expected to reduce bias when using large training sets. However, this
does not necessarily equate to a reduction in total error

It is difficult to argue that these experiments are exhaustive. More and
larger data sets would certainly provide more accurate estimations of bias and
variance, but the benefit of this must be weighed against the extra execution
time required. Experiments took up to 15 days to execute one algorithm on one
data set at one training set size, and thus it was concluded that experimenting
with more and larger data sets would currently be infeasible.

Even so, these experiments provide strong motivation for the development of
algorithms with an emphasis on bias management rather than variance manage-
ment, due to bias becoming a more dominant cause of error with larger training

sets.
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Chapter 4

A Comparison of Sampling

Methodologies

The previous chapter investigated whether different types of algorithms are re-
quired when learning from large data sets. However, even with the strongest
evidence that new algorithms may be necessary, such algorithms need to be de-
veloped and shown to have benefits beyond those of existing algorithms. Until
then existing algorithms will continue to be employed. Thus, methods which
make existing algorithms more practical must be researched.

Much research has been performed into “scaling up” existing algorithms so
they can better handle large data sets. This includes parallelising algorithms,
distributing algorithms, and investigating other ways in which algorithms can be
made more efficient, thus reducing execution time. One simple way of reducing
execution time is to reduce the amount of data input to the algorithm. Such data
reduction can involve removing less relevant attributes or limiting the training
set to include only a selection of instances. The most common way in which the
latter is performed is with sampling, in which a number of instances are randomly
or semi-randomly selected for inclusion into the training set. Sampling can also

be performed within the inference process by using subsets of available data.

75



It is commonly believed that given large enough samples, sampling method-
ologies can produce models which represent the concepts underlying the data
with an accuracy close to that obtainable without sampling, but with a signif-
icant decrease in execution time. Sampling can often achieve these purposes
[84, 60, 99], but little is known about the trade-off a practitioner makes be-
tween the increase in error and decrease in execution time. Practitioners may
benefit from having information regarding how different sampling methodologies
affect this trade-off, and how sample size affects accuracy and execution time.
Experiments were performed to clarify these issues for two popular sampling

methodologies.

4.1 Definitions

Throughout this chapter a number of terms with specific meanings will be used.
For clarity, they are defined here.
Whole data set - the full set of collected instances.
Full training set - the largest possible set of instances that can be used for
training. Equivalent to the difference of the whole data set and the test set.
Training set - the actual set of instances input to an algorithm for inferring
models. This may not be the full training set when using pre-sampling.
Awailable data - the set of instances available for inference at a particular
time. Within a decision tree context, available data differs between nodes, and,

at the root node, is equivalent to the training set.

4.2 Sampling Methodologies

It is a common occurrence that the amount of data available is more than enough
to infer an acceptable model of the collected data [26, 42]. In situations where

this is true, it is unnecessary to use all the data to infer a model. For example,
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if a data set contains two classes separated by a simple concept, it may be
possible to infer adequate decision boundaries with only a small fraction of the
data. However, reducing the amount of data increases the chance of error in
the model as the precise decision boundaries required become less clear. This
results in a trade-off between sample size and potential performance degradation.
Regardless, sampling remains a popular means for reducing execution time of
induction algorithms.

This section discusses two popular methods of performing sampling. For the
purpose of this research, sampling is defined as representing a set of instances
with a subset of those instances. Note that this excludes methods such as

clustering and data squashing from consideration as sampling algorithms.

4.2.1 Pre-Sampling

The traditional view of sampling is of a subset of instances from the full training
set being selected and input to the learning algorithm as the training set. A sam-
ple must be selected only once per inference process, resulting in little penalty
in terms of increased execution time due to sampling overhead. The sample is
selected before the chosen learning algorithm is initiated, and thus these meth-
ods can be viewed as sampling that is performed before the algorithm begins,
or pre-sampling.

Instances may be selected with or without replacement from the full train-
ing set. Sampling may be performed totally randomly, so that every instance
has equal chance of being selected, or with stratification, undersampling, or
oversampling [74]. Stratification involves selecting a sample such that the class
distribution of the data set is maintained in the sample. Undersampling evens
the class distribution of the sample by removing instances of the majority class.
Oversampling also evens class distributions, but does so by replicating instances

of under-represented classes in the sample.
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Benefits and Drawbacks

The justification for using pre-sampling is that if a sample is sufficiently repre-
sentative of the full training set, then a model inferred from the sample should
be similar to that which would be obtained from using the full training set.
After taking the computational complexity of an algorithm into account, even
a relatively small reduction in training set size can result in a significant saving
of execution time. However, the pre-sampling methodology introduces a signifi-
cant problem — determining an appropriate sample size such that the sample is
sufficiently representative of the full training set while minimising sample size.
This issue is discussed in Chapter 5.

The performance of algorithms that use a divide-and-conquer methodology,
such as decision tree algorithms, can suffer greatly from pre-sampling. For ex-
ample, consider a full training set containing 10,000 instances, and a sample of
this set containing 500 instances. Given that many data sets used for experi-
mental purposes in machine learning number only a few hundred instances, this
might be considered a sufficiently large sample. Now consider a concept of this
data that is represented in only one per cent of instances. In the full training
set, this concept would be represented by 100 instances, but in the sample will
be represented by only five. If the split chosen for the root node divides these
five instances, it is unlikely that this concept will be detected when inferring
from the sample. However, if the same split is chosen with the full training set,
it may still be possible for this concept to be detected.

Meta-algorithms such as boosting [41] and bagging [10] select instances for an
inference round using pre-sampling, although boosting complicates the process

by taking instance weights into account.
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4.2.2 Sub-Sampling

An alternative way of performing sampling is to select samples at specified points
throughout the inference process. For example, within a decision tree context a
sample could be taken from the available data at each node. The split at the
node can then be determined using only the sample, resulting in a reduction in
execution time. Once the split is selected, all instances of the node’s available
data may then be passed down the node’s branches for the learning process to
continue.

The effect of sub-sampling is to impose an upper limit on the number of in-
stances used for inference at any time in an algorithm. If the number of instances
in the available data set is less than the desired sample size, all of the available
data may be used. As with pre-sampling, sub-sampling may be performed with
or without replacement, and with or without stratification, oversampling, or

undersampling.

Benefits and Drawbacks

Because the full training set is input, the number of instances available at the
start of the inference process is greater with sub-sampling than pre-sampling
given the same sample size. This continues to be true later in the process after
a number of divisions, and delays the effect of fragmenting data due to the
divide-and-conquer paradigm. For example, reconsider the example given for
pre-sampling, where the full training set contains 10,000 instances with a sample
size of 500 instances. Assuming all splits are binary, each node of depth four
will have an average of 31.25 instances using pre-sampling. Using sub-sampling,
each depth four node will have an average of 625 instances, and can still use 500
for inference. This may allow sub-sampling to select better splits lower in the
tree.

Sub-sampling may also be able to build more descriptive models than pre-
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sampling. Continuing with the above example, pre-sampling can reach a maxi-
mum depth of 10 before each node will contain less than one instance on average.
This does not occur with sub-sampling until depth 14.

However, the advantages of sub-sampling come at the cost of execution time.
More samples must be taken, and using more instances for inference and creating
larger models also increase execution time.

Sub-sampling is used in the seminal CART algorithm [13], where samples are
selected such that the number of instances represented in the sample by each

class are as even as possible.

4.3 The Problem With Sampling

Sampling has long been used as an effective method of reducing execution time.
In some situations, sampling may be necessary before learning, as the amount of
data available may be too great for a model to be built in a reasonable time with
all the data. A different situation may require that a model be built as quickly as
possible, with accuracy being of secondary importance. There may also be situ-
ations where accuracy of inferred models is of primary importance, but reduced
execution time would be a substantial bonus. Alternatively, descriptiveness of
models may be the main issue.

Given these scenarios, it is reasonable to expect that the requirements of
sampling may be different in different circumstances. It is therefore illogical to
expect that one type of sampling will be best in all situations.

There has been much research performed into both pre-sampling (e.g. [104,
99, 35]) and sub-sampling (e.g. [1, 77, 31]). However, although many of these
papers compare the method introduced in the respective paper to no sampling,
to date a comparison between pre-sampling and sub-sampling has not been
performed. Additionally, it is contended that in spite of recent research focusing

more on sub-sampling than pre-sampling, pre-sampling is likely to be employed
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more often. This is due to the fact that pre-sampling is undoubtedly simpler,
and does not require modification of existing algorithms.

It is reasonable to expect that a practitioner faced with a situation in which
sampling should be considered would gain from having knowledge about the
advantages and disadvantages of different types of sampling. There is little
information about what sample size should be used to achieve certain accuracy,
how pre-sampling and sub-sampling compare against each other, and what risks
are taken when performing sampling. The purpose of this chapter is to provide a
comparison between pre-sampling and sub-sampling, in terms of accuracy, model
descriptiveness, and execution time. It is believed that this could be of use to

practitioners using sampling, rather than relying on assumptions and guesses.

4.4 Experiments

Experiments were performed to investigate how pre-sampling and sub-sampling
compare to each other and to learning from the full training set. Inferring
models from the full training set without use of a sampling methodology will
henceforth be referred to as no sampling. Comparisons were made regarding ac-
curacy, model complexity, and execution time. Such information may be useful
to practitioners by providing insight into the trade-off encountered when sam-
pling. It is reasonable to expect that pre-sampling will be less accurate than
sub-sampling, which will in turn be less accurate than no sampling. It is also
reasonable to expect that pre-sampling will be quicker than sub-sampling, which

will be quicker than no sampling.

4.4.1 Methodology

Following from the experiments of Chapter 3, experiments were performed using

ten-times three-fold cross-validation, resulting in 30 models being built for each
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methodology for each data set. C4.5 was used as the induction algorithm as its
structure lends itself to implementing the sampling methodologies investigated.
As test data was required for evaluation, the full training set is taken as two-

thirds of the whole data set.

Sampling Implementations

The implementation of sub-sampling used in these experiments follows that of
CART [13], selecting fixed size disproportionate samples at every node, such that
the number of instances represented in the sample for each class are as equal as
possible. Pre-sampling selects a random fixed-size sample as the training set,
without regard of class distribution, and without replacement.

As both sub-sampling and no sampling have recourse to the full training set
during induction, both used the full training set for pruning. However, since
the input to pre-sampling is reduced, pre-sampling used only the input data for

pruning.

4.4.2 Sample Size

Sample sizes started at 1,000 instances and doubled to the largest size less than
the full training set. Sample sizes differ from the previous chapter as training
sets of 32 instances are of little use for these experiments. Although it is possible
that sub-sampling could produce reasonable models with such a small sample
size, it is unlikely that this will be true for pre-sampling. Therefore, a more

natural number for the minimum sample size was selected.

4.4.3 Data Sets

All data sets used in Chapter 3 were used in these experiments.
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4.5 Results

Graphs show accuracy, time to infer one model, and model complexity in relation
to sample size. Results are averaged across the thirty runs. Each graph shows
results for pre-sampling, sub-sampling, and no sampling. Since no sampling
provides only one measurement per data set, it is presented as a horizontal line
in the graphs.

The number of instances in the full training set is shown in the key. For the
Adult data set this is 32,561 instances. Using the above described methodology
for determination of sample sizes, the largest sample should then be 32,000
instances. However, no results were recorded for this sample size as such a small
difference in training set size offers little toward the purpose of these experiments.

Note that as opposed to Chapter 3, graphs show accuracy rather than error.
This is because one of the uses of pre-sampling is in determining learning curves,

where standard practice plots accuracy.

4.5.1 Accuracy

Figures 4.1-4.11 plot, for each data set, accuracy of the sampling methods used,
at different sample sizes, compared to no sampling.

The results show pre-sampling is often substantially less accurate than the
full training set at the smallest sample size, but has similar accuracy with the
largest sample size. Pre-sampling reaches the accuracy of no sampling for only
the Distinct Boundary and Random Binary data sets, and only at the largest
sample size.

Sub-sampling also reaches accuracy comparable to no sampling, but often
does so with smaller samples than pre-sampling. Of interest is that sub-sampling
occasionally has greater accuracy than no sampling. As stated in the experiment
description, it was expected that no sampling would have greater accuracy than

sub-sampling. These results are therefore somewhat surprising.
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Figure 4.6: Accuracy on the Fuzzy Boundary data set

86



Accuracy

0.9290
0.9280
0.9270
0.9260
0.9250
0.9240
0.9230
0.9220
0.92101

Pre ——
— X —- |

S
No (58,9{5“213 ------

0.9200
1000

L L
2000 4000 8000
Sample Size

16000 32000
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Figure 4.8: Accuracy on the Random Binary data set
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Table 4.1 shows the number of occurrences for each data set where sub-
sampling had equal accuracy or greater accuracy than the full training set,
and the smallest sample size after which this is consistently true. Of the 91
measurements taken, sub-sampling is at least as accurate as no sampling on 61
occasions.

It is interesting that this is often achieved with small sample sizes, and
continues to be true for all larger sample sizes used. The strongest instance
of this is the Sleep data set, where the accuracy of sub-sampling is greater
than that of no sampling for all but the smallest sample size used. Also, there
are only four data sets where sub-sampling is never more accurate than no
sampling. The reason for this could be that sub-sampling may be a localised
form of boosting. Boosting selects a set of instances from which a model will be
inferred, with the set of instances selected being dependent on the performance of
previously inferred models. This process is performed numerous times, forming

a committee of models. Similarly, sub-sampling selects a set of instances from
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Table 4.1: Number of times Sub-Sampling is at least as accurate as the Full

Training Set

Data Set Equal | Better Size
Adult 0 0 —
Census Income 0 1 128,000
Connect-4 0 2 16,000
Cover Type 0 3 64,000
Distinct Boundary 10 1 1,000
Fuzzy Boundary 11 0 1,000
IPUMS 1 1 32,000
Random Binary 10 0 2,000
Shuttle 2 4 1,000
Sleep 0 6 2,000
Waveform 9 0 4,000
Total 43 18
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which a node will be inferred, again with the set of instances selected being
dependent on previously inferred nodes. A number of nodes are combined into
a tree. Although there are differences between sub-sampling and boosting, such
as the calculation of instance selection probabilities with boosting, the similarity
of sub-sampling to boosting may explain its high accuracy.

The aim of these experiments is not to provide insight into the optimal size
with which to sample, but rather to compare the effects of pre-sampling to those
of sub-sampling. Given this, and the expectation that sampling will impact ac-
curacy, it may be more fruitful to provide an analysis of the sample size required
to meet a given cost, as opposed to the cost of using a certain sample size. There-
fore, a comparison of performance of algorithms within bounded accuracy losses
was performed, where loss of accuracy due to sampling is considered within the
bound if the accuracy of the sampling methodology is within a given percentage
of the accuracy of no sampling. For example, if the accuracy of no sampling
is 0.8, then given a five per cent margin a sampling methodology is considered
within the bounded loss if its accuracy is no less than 0.8(1 —0.05) = 0.76. Such
an analysis may provide insight into the relative costs of each sampling method.
For example, rather than calculating the mean loss of accuracy for each sample
size, it may be more useful to know at what sample size no more than a given
accuracy loss can be expected.

Tables 4.2—4.4 show the results of this comparison for one, two, and five per
cent bounded accuracy loss respectively. Wins represent the number of times the
accuracy of a sampling method was within a bounded loss, and losses the number
of times it was not. The smallest sample size after which the sampling method
was consistently within these bounds is also given, along with the percentage of
the full training set to which this size relates.

Sub-sampling provides accuracy within one per cent of accuracy of no sam-

pling with a sample size of 1,000 instances on seven of the eleven data sets.
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Table 4.2: Comparison of sampling methods to full training set with 1 per cent

bounded accuracy loss

Pre Sub

Data Set Win:Loss  Size % Full | Win:Loss  Size % Full
Adult 2:3 8,000 24.6 4:1 2,000 6.1
Census Income 6:2 4,000 3.0 8:0 1,000 0.8
Connect-4 0:6 — — 3:3 8,000 17.8
Cover Type 0:9 - - 4:5 64,000 16.5
Distinct Boundary 7:4 16,000 1.5 11:0 1,000 0.1
Fuzzy Boundary 11:0 1,000 0.1 11:0 1,000 0.1
[PUMS 6:0 1,000 1.7 6:0 1,000 1.7
Random Binary 2:9 512,000  48.0 10:1 2,000 0.2
Shuttle 6:0 1,000 2.6 6:0 1,000 2.6
Sleep 1:6 64,000  90.6 7:0 1,000 1.4
Waveform 8:3 8,000 0.8 11:0 1,000 0.1
Total 49:42 81:10
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Table 4.3: Comparison of sampling methods to full training set with 2 per cent

bounded accuracy loss

Pre Sub

Data Set Win:Loss  Size % Full | Win:Loss  Size % Full
Adult 3:2 4,000 12.3 5:0 1,000 3.1
Census Income 8:0 1,000 0.8 8:0 1,000 0.8
Connect-4 1:5 32,000 71.1 4:2 4,000 8.9
Cover Type 1:8 256,000  66.1 4:5 64,000  16.5
Distinct Boundary 9:2 4,000 0.4 11:0 1,000 0.1
Fuzzy Boundary 11:0 1,000 0.1 11:0 1,000 0.1
[PUMS 6:0 1,000 1.7 6:0 1,000 1.7
Random Binary 2:9 512,000  48.0 10:1 2,000 0.2
Shuttle 6:0 1,000 2.6 6:0 1,000 2.6
Sleep 2:5 32,000  45.3 7:0 1,000 1.4
Waveform 10:1 2,000 0.2 11:0 1,000 0.1
Total 59:32 83:8
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Table 4.4: Comparison of sampling methods to full training set with 5 per cent

bounded accuracy loss

Pre Sub

Data Set Win:Loss  Size % Full | Win:Loss  Size % Full
Adult 5:0 1,000 3.1 5:0 1,000 3.1
Census Income 8:0 1,000 0.8 8:0 1,000 0.8
Connect-4 2:4 16,000 35.5 6:0 1,000 2.2
Cover Type 2:7 128,000  33.0 9:0 1,000 0.3
Distinct Boundary 11:0 1,000 0.1 11:0 1,000 0.1
Fuzzy Boundary 11:0 1,000 0.1 11:0 1,000 0.1
[PUMS 6:0 1,000 1.7 6:0 1,000 1.7
Random Binary 2:9 512,000  48.0 10:1 2,000 0.2
Shuttle 6:0 1,000 2.6 6:0 1,000 2.6
Sleep 4:3 8,000 11.3 7:0 1,000 14
Waveform 11:0 1,000 0.1 11:0 1,000 0.1
Total 68:23 90:1
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Pre-sampling can do this for only three data sets. Sub-sampling builds a model
within bounded loss of one per cent for all data sets, whereas pre-sampling does
not at any sample size for the Connect-4 and Cover Type data sets.

With bounded accuracy loss of two per cent, sub-sampling requires a sample
of only 4,000 instances for all but one data set. Pre-sampling can build ac-
ceptable models for all data sets, but some tests require samples of substantial
size.

With five per cent bounded accuracy loss, sub-sampling requires samples of
1,000 instances for all data sets but one. Pre-sampling still requires substantial
samples for some data sets.

Random Binary is the only data set for which sub-sampling is not within 5
per cent bounded accuracy loss for sample size 1,000. At this sample size, both
pre-sampling and sub-sampling perform only slightly better than chance on this
data set. Both forms of sampling perform much better than chance with all
other sample sizes and data sets.

The results for the Random Binary data set are also interesting from another
perspective. As shown in Table 3.4, the Random Binary data set consists of 16
binary attributes, producing 2'® = 65,536 distinct combinations. Sub-sampling
reaches accuracy loss bounds of one per cent with a sample size of 2,000 instances.
However, pre-sampling does not do so until 512,000 instances — substantially
more than the number of unique instances in the data set. This highlights how
sub-sampling can produce more accurate models with a smaller sample size. It
must be remembered, though, that because a sample is taken at each node,
sub-sampling considers more instances in total than pre-sampling with the same
sample size.

The percentage of the full training set after which accuracy is consistently
within a given bounded loss is interesting. Tables 4.2-4.4 show that only a

small percentage of the full training set is required to build models within the
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given bounds. With pre-sampling, six of the eleven data sets require no more
than three per cent of the full training set to build models with one per cent
bounded accuracy loss, and two require less than one per cent. With two per
cent bounded accuracy loss, four data sets require less than one per cent of the
full training set, and nine require less than 50 per cent. With five per cent
bounded accuracy loss, four data sets require less than one per cent of the full
training set, and all require less than half. It is worth noting that of the five
data sets that require greater than one per cent of the full training set to reach
this bound, three of the data sets do so at the minimum sample size used in
these experiments. If smaller samples were used, it is plausible that these data
sets may also fall below the one per cent mark.

The results are in general similar for sub-sampling, although the sample size
required for a given accuracy loss bound is often smaller than that for pre-
sampling. With one per cent bounded accuracy loss, only two data sets require
more than ten per cent of the full training set, and four require less than one per
cent. With two per cent bounded loss, only one data set requires more than ten
per cent of the full training set, and five require less than one per cent. With
five per cent bounded loss, the maximum size required is 3.1 per cent, with six
data sets requiring less than one per cent. As with pre-sampling, a number of
data sets have reached the smallest sample size, and it is plausible that they

may be able to reach one per cent of the full training set.

Summary

This section has compared the accuracy of models built using pre-sampling,
sub-sampling, and no sampling. The comparison has shown that sub-sampling
produces more accurate models than pre-sampling. The models built using sub-
sampling also fall within bounded losses from the accuracy of no sampling more

often and with smaller sample size than pre-sampling. That pre-sampling does
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Figure 4.12: Mean number of nodes inferred for the Adult data set

not create models within one per cent bounded accuracy loss from no sampling
for all data sets suggests it may be a risky methodology to use if accuracy is
of utmost importance. Also, it is interesting that sub-sampling often produces
models with accuracy at least as great as that of no sampling with small sample

sizes.

4.5.2 Model Descriptiveness

Figures 4.12-4.22 plot, for each data set, the mean number of nodes inferred for
the sampling methods used, at different sample sizes, compared to no sampling.

Figure 4.19 shows a large jump in model size for sub-sampling between 1,000
and 2,000 instances on the Random Binary data set. This is because at 1,000
instances both pre-sampling and sub-sampling inferred only one node. This is
likely due to the nature of this data set, resulting in samples of this size con-
taining insufficient information from which an appropriate split can be decided.

This also causes the poor accuracy of both sampling methods for this data set
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Figure 4.13: Mean number of nodes inferred for the Census Income data set
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Figure 4.14: Mean number of nodes inferred for the Connect-4 data set
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Figure 4.15: Mean number of nodes inferred for the Cover Type data set
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Figure 4.16: Mean number of nodes inferred for the Distinct Boundary data set
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Figure 4.17: Mean number of nodes inferred for the Fuzzy Boundary data set
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Figure 4.18: Mean number of nodes inferred for the IPUMS data set
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Figure 4.19: Mean number of nodes inferred for the Random Binary data set
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Figure 4.20: Mean number of nodes inferred for the Shuttle data set
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Figure 4.21: Mean number of nodes inferred for the Sleep data set
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Figure 4.22: Mean number of nodes inferred for the Waveform data set
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at this size. Note, however, that with a sample of 2,000 instances or more,
sub-sampling results in a similar number of nodes to no sampling.

The results show that pre-sampling generally infers fewer nodes than no
sampling. When this is not true it is always at the largest sample size. Pre-
sampling generally infers fewer nodes than sub-sampling with the same sample
size, with the few occasions where pre-sampling infers more nodes than sub-
sampling occurring only with the two largest samples of a data set.

Sub-sampling often creates models with a similar number of nodes to no
sampling, even with small samples. Of the 91 measurements taken, sub-sampling
has fewer nodes on 69 occasions, and more on 22. This is statistically significant
at the 0.05 level using a one-tailed binomial sign test (p < 0.0001). However, it
must be noted that these measurements are taken after pruning has been applied,
and that sub-sampling and no sampling use the same data (i.e the full training
set) for pruning. An analysis of unpruned tree size shows that of the eleven data
sets, sub-sampling infers larger trees seven times at the largest sample size, and
six times at the smallest sample size. This suggests that sub-sampling has no
consistent effect on the number of nodes inferred, but may build trees that are

more susceptible to pruning.

Correlation Between Accuracy and Model Descriptiveness

The description of the experiments in Section 4.4 stated expectations that the
accuracy of no sampling should be greater than that of either sampling method.
The results of Section 4.5.1 show this to be generally true. Given that sub-
sampling is occasionally more accurate than no sampling, it is worth investigat-
ing whether there is a correlation between model size and accuracy.

There are 22 occasions where sub-sampling infers more nodes than no sam-
pling. Of these, the accuracy of sub-sampling is greater than that of no sampling

only twice. The result of a one-tailed sign test (p < 0.0001) shows that this can
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be considered statistically significant evidence at the 0.05 level that sub-sampling
loses accuracy when it infers larger models than no sampling.

For those occasions where sub-sampling has greater accuracy than no sam-
pling, comparing the number of nodes inferred by no sampling and sub-sampling
shows that sub-sampling infers fewer nodes on 14 occasions, and more on only
three — statistically significant at the 0.05 level (p = 0.0064). Extending the
analysis to include those occasions where accuracy is equal shows the trend
becomes stronger (45:16, p = 0.0001). This suggests that when sub-sampling
generates models at least as accurate as no sampling, those models will be less
complex than those built without sampling.

There are 69 occasions where sub-sampling infers fewer nodes than no sam-
pling. Comparing the accuracy of these occasions shows sub-sampling to produce
models at least as accurate as no sampling 45 times, and models with less ac-
curacy 24 times — statistically significant at the 0.05 level (p = 0.0077). This
implies that when sub-sampling produces smaller models than the full training

set, such models will generally not suffer from loss of accuracy.

Summary

The descriptiveness of models inferred by pre-sampling, sub-sampling, and no
sampling has been compared. Sub-sampling generally produces models with
similar descriptiveness to that of no sampling. Pre-sampling usually does this
with only the largest sample size. Sub-sampling was also shown to generally

benefit from increased accuracy when it infers fewer nodes than no sampling.

4.5.3 Execution Time

Figures 4.23-4.33 plot, for each data set, the mean time taken to build a single
model for the sampling methods used, at different sample sizes, compared to

no sampling. Measured execution time includes the time required to build and

104



16 I I I
14 - B 2
%-_-_-_-;-_-_-_-_-;-_-_-_%_-_-.-_-_-_-;-—-—-—-—-;-—>-€-’-’- ---------------------------
12 —
10k .
=
S 8F 7
s
6 L —
ne I
—+— Pre
2 | --%-- Sub u
------ N0 (32,561) .
0
1000 2000 4000 8000 16000

Sample Size

Figure 4.23: Mean model building time for the Adult data set

prune a model, and small associated overheads. The time to initialise data
structures, read data from disk, and evaluate model accuracy is not included in
this measurement.

Pre-sampling is always quicker than sub-sampling for the same sample size,
and always quicker than no sampling. Sub-sampling is occasionally slower than
no sampling, usually only with the two largest sample sizes.

An interesting phenomenon occurs with sub-sampling on the Connect-4 data
set. Execution time for small samples is well above that of no sampling, but
drops drastically with larger training sets. As can be seen in Figure 4.14, the
number of nodes inferred does not significantly change. However, the structure
of the trees does. An investigation of the unpruned trees sub-sampling inferred
for this data set revealed that trees built with samples of size 1,000 to 4,000 have
maximum depth ranging between 37 and 40, with the highest concentration of
nodes around depth 31 to 33. Trees built with a sample size of 8,000 have

maximum depth 31, with the highest concentration of nodes around depth 20.

105



140 T T T T T T
120 X
« X7 RN
1003777 7T T T X "
______________________ X .
< 80 4
a
S
S 60 —
40 + -
—+— Pre
20 - -¢-- Sub .
------ No (133,015) . |

0 t +
1000 2000 4000 8000 16000 32000 64000 128000
Sample Size

Figure 4.24: Mean model building time for the Census Income data set
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Figure 4.25: Mean model building time for the Connect-4 data set
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Figure 4.26: Mean model building time for the Cover Type data set
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Figure 4.27: Mean model building time for the Distinct Boundary data set
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Figure 4.28: Mean model building time for the Fuzzy Boundary data set
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Figure 4.29: Mean model building time for the IPUMS data set
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Figure 4.30: Mean model building time for the Random Binary data set
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Figure 4.31: Mean model building time for the Shuttle data set

109



250 .

%-_-_-_-;'_'_'_'XL'_'_'_'_'L'_>I<_'_':_'_'_-_-_-g<_'—'—'—';=-'—'7‘l<' ““““ R
200 -4
2 150 -
=i
o
g
© 100 - =
0 —— Pre B
--%X-- Sub
------ No (70,605?
0 | | | |
1000 2000 4000 8000 16000 32000 64000
Sample Size
Figure 4.32: Mean model building time for the Sleep data set
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Figure 4.33: Mean model building time for the Waveform data set
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Trees built with a sample size of 16,000 or 32,000 have maximum depth of 25,
with the highest concentration of nodes around depth 15. This shows that
trees built using larger samples tend to be broader than those with smaller
samples. Although the total number of nodes inferred changes little, broader
trees divide data earlier, resulting in nodes having fewer instances higher in the
tree. After taking computational complexity into account, this can result in
reduced execution time, as each node requires less computation.

Tables 4.5-4.7 show the percentage of execution time taken by pre-sampling
and sub-sampling, relative to no sampling, for the smallest sample size after
which the sampling methodology was consistently within a bounded accuracy
loss. Note that many of the entries, especially for sub-sampling, are the same
for differing levels of bounded accuracy loss. This is due to the fact that, for
a number of data sets, accuracy reached differing bounded loss levels with the
same sample size.

The time taken to build a model within a given bounded accuracy loss using
pre-sampling is always less than the time taken to build a model with the same
accuracy loss using sub-sampling. In fact, the time taken to build a model within
one per cent bounded accuracy loss using pre-sampling is always less than that
to build a model within five per cent bounded accuracy loss using sub-sampling.
However, as shown previously in Table 4.2, it was not always possible to build
a model within one per cent bounded accuracy loss using pre-sampling.

The time taken to build models within given accuracy loss bounds using
pre-sampling is often an exceptionally small percentage of that taken for no
sampling. With two per cent bounded accuracy loss, six data sets take less than
0.5 per cent of the time of no sampling. Only four take more than five per cent.
Substantial amounts of time can be saved using pre-sampling, but the results
do not impart overwhelming confidence that an acceptable model will be built.

The results for sub-sampling show it often requires a substantial amount of
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Table 4.5: Percentage of the full training set required for one per cent bounded

accuracy loss

Time For Pre Sub
Data Set Full TS || Time % Full | Time % Full
Adult 13.26 1.48 11.2 12.68 95.6
Census Income 86.61 0.76 0.9 100.18  115.7
Connect-4 6.74 - - 14.59 216.5
Cover Type 1818.31 - - 1603.14  88.2

Distinct Boundary | 289.65 2.47 0.9 232.02 80.1
Fuzzy Boundary 359.93 1.25 0.3 127.07  35.3

IPUMS 86.19 0.34 0.4 73.65 85.5
Random Binary 181.70 80.25 44.2 140.20 7.2
Shuttle 0.15 0.07 1.4 1.24 24.1
Sleep 240.8 199.35  82.8 232.56 96.6
Waveform 1668.54 4.39 0.3 1035.46  62.1
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Table 4.6: Percentage of the full training set required for two per cent bounded

accuracy loss

Time for Pre Sub
Data Set Full TS Time % Full | Time % Full
Adult 13.26 0.54 4.1 12.77 96.3
Census Income 86.61 0.19 0.2 100.18  115.7
Connect-4 6.74 4.59 68.1 34.43  510.8
Cover Type 1818.31 | 1066.29  58.6 1603.14  88.2

Distinct Boundary | 289.65 1.41 0.5 232.02 80.1
Fuzzy Boundary 359.93 1.25 0.3 127.07  35.3

IPUMS 86.19 0.34 0.4 73.65 85.5
Random Binary 181.70 80.25 44.2 140.20 77.2
Shuttle 0.15 0.07 1.4 1.24 24.1
Sleep 240.8 54.13 22.5 232.56 96.6
Waveform 1668.54 1.85 0.1 1035.46  62.1
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Table 4.7: Percentage of the training set required for five per cent bounded

accuracy loss

Time for Pre Sub
Data Set Full TS | Time % Full || Time % Full
Adult 13.26 0.08 0.6 12.77 96.3
Census Income 86.61 0.19 0.2 100.18  115.7
Connect-4 6.74 2.09 31.0 29.68 440.4
Cover Type 1818.31 | 402.87  22.2 1452.58  79.9

Distinct Boundary | 289.65 1.26 0.4 232.02 80.1
Fuzzy Boundary 359.93 1.25 0.3 127.07  35.3

IPUMS 86.19 0.34 0.4 73.65 85.5
Random Binary 181.70 80.25 44.2 140.20 77.2
Shuttle 0.15 0.07 1.4 1.24 24.1
Sleep 240.8 4.43 1.9 232.56 96.6
Waveform 1668.54 1.57 0.1 1035.46  62.1
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time to build models with a given bounded accuracy loss, although the amount of
time taken is more consistent than pre-sampling. There is often little difference
in execution time between the smallest and largest sample sizes for a data set
with sub-sampling, whereas pre-sampling shows large increases in execution time
with larger samples.

With one per cent bounded accuracy loss, sub-sampling takes an average of
88.8 per cent of the time of no sampling. With two per cent bounded accuracy
loss, sub-sampling takes an average of 115.6 per cent. With five per cent bounded
accuracy loss, it takes 108.5 per cent. However, the unusual nature of these
results is largely due to the anomalous results of the Connect-4 data set. Ignoring
this data set changes these results dramatically. With one per cent, the average
drops to 76.0 per cent; with two per cent the average is 76.1 per cent; with five it
is 75.3 per cent. The increase between the average for bounded accuracy losses
of one and two per cent is due to a small decrease in accuracy for the Adult data
set, between samples of 1,000 and 2,000 instances. These results suggest some
confidence can be had in the ability of sub-sampling to build models within a

given accuracy loss of no sampling while reducing execution time.

4.5.4 Implications for Learning Curves

The results concerning pre-sampling for the Cover Type data set have an inter-
esting implication for methods that employ learning curves to find an acceptably
accurate model. Learning curves build models using an increasing number of in-
stances until it is found that continuing the process will result in no or negligible
increase in accuracy. At this point, the curve is said to have “converged.” At
the second largest sample size for the Cover Type data set, accuracy is 0.8963,
and 0.9241 at the largest sample size. Given that this is close to a three per cent
improvement in overall accuracy, it is unreasonable for learning curve methods

to detect convergence before the largest sample size. However, the total time
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required to build models with the sample sizes used is substantial. The time
taken to build all models using pre-sampling for the Cover Type data set using
pre-sampling takes 95.4 per cent of the time to build a model using no sampling,
with pre-sampling not having built a model within one per cent on the accu-
racy of no sampling. The results for the Connect-4 data set are direr. Building
models for this data set takes 125.8 per cent of the time of no sampling, again
without reaching one per cent accuracy loss. The Sleep data set is similar, tak-
ing 113.3 per cent of the time of no sampling, but one per cent accuracy loss is
reached.

The results for these three data sets cast doubt over the general applicability
of learning curve methods. Although the results show eight data sets where
learning curves are likely to work very well, it cannot be known a priori that
this will be the case. It is also interesting that Figure 4.7 shows the IPUMS data
set has a decrease in accuracy when moving from a sample size of 8,000 instances
to 16,000 instances. It is reasonable to expect that learning curve methodologies
would detect this as convergence, as accuracy has not continued to improve. The
large gain at 32,000 instances, which results in the most accurate models, would

therefore remain unrealised.

Summary

The execution time of the sampling methods investigated was compared. Pre-
sampling was shown to be faster than sub-sampling and no sampling. Sub-
sampling is generally faster than no sampling — when it is not, it is usually
with only the two largest sample sizes. When comparing the time required
to build models within a given bounded accuracy loss from no sampling, pre-
sampling results in substantial savings of execution time, and is always faster

than building models with the same bounded loss with sub-sampling.
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4.5.5 The Effect of Pruning Set Size

One potential reason for the difference between pre-sampling and sub-sampling
is pruning. Pruning with pre-sampling was performed with only the pre-sample,
while pruning with sub-sampling had access to the full training set. To investi-
gate the effect of this disparity, results of models built with and without pruning

were compared.

Accuracy

Tables 4.8 and 4.9 show the effect of pruning on the accuracy of pre-sampling
and sub-sampling for the smallest and largest sample sizes employed respec-
tively. The tables show that when pruned sub-sampling is more accurate than
pruned pre-sampling, unpruned sub-sampling is also more accurate than un-
pruned pre-sampling. The sole exception is with the largest sample size for the
Census Income data set. Note that, at the smallest sample size, pre-sampling
models built without pruning are marginally more accurate than those built
with pruning on the IPUMS, Sleep, and Waveform data sets. However, these
unpruned accuracies are still less than those obtained with sub-sampling either
with or without pruning.

The scale of the effect of pruning on the accuracies of pre-sampling and sub-
sampling is generally similar. When there is little or no difference between the
pruned and unpruned accuracies for a sampling methodology, there is generally
a similar difference between the pruned and unpruned accuracies of the other
sampling methodology. This suggests that accuracy results of previous sec-
tions are not dramatically affected by the use of different pruning sets between

methodologies.
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Table 4.8: Accuracy of pre-sampling and sub-sampling with and without pruning

at the smallest sample size

Pre-sampling Sub-sampling
Data Set Pruned | Unpruned || Pruned | Unpruned
Adult 0.8365 0.8158 0.8475 0.8325
Census Income 0.9386 0.9306 0.9471 0.9352
Connect-4 0.6761 0.6414 0.7789 0.7664
Cover Type 0.6623 0.6502 0.9321 0.9312

Distinct Boundary || 0.9688 0.9688 0.9991 0.9991
Fuzzy Boundary 0.9942 0.9942 0.9985 0.9984

IPUMS 0.9209 0.9026 0.9280 0.9073
Random Binary 0.5047 0.5052 0.5019 0.5019
Shuttle 0.9946 0.9947 0.9996 0.9996
Sleep 0.6553 0.6203 0.7296 0.6882
Waveform 0.9653 0.9654 0.9854 0.9853
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Table 4.9: Accuracy of pre-sampling and sub-sampling with and without pruning

at the largest sample size

Pre-sampling Sub-sampling
Data Set Pruned | Unpruned || Pruned | Unpruned
Adult 0.8570 0.8385 0.8589 0.8409
Census Income 0.9525 0.9421 0.9525 0.9409
Connect-4 0.7860 0.7720 0.7982 0.7902
Cover Type 0.9241 0.9236 0.9379 0.9374

Distinct Boundary || 0.9990 0.9990 0.9990 0.9990
Fuzzy Boundary 0.9984 0.9984 0.9985 0.9984

IPUMS 0.9209 0.9060 0.9282 0.9070
Random Binary 1.0000 1.0000 1.0000 1.0000
Shuttle 0.9995 0.9995 0.9996 0.9996
Sleep 0.7288 0.6861 0.7309 0.6892
Waveform 0.9856 0.9655 0.9857 0.9856
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Execution Time

The difference in the sets used for pruning between the two sampling method-
ologies could also affect reported execution times. Because sub-sampling uses
the full training set for pruning, it is likely that any effect of this disparity will
manifest itself as increased execution time for sub-sampling. If this is true, then
it is possible that this is the cause of the substantially increased execution time
of sub-sampling over that of pre-sampling. This can be investigated by compar-
ing the execution time of sub-sampling without pruning to that of pre-sampling
with pruning. If the execution time of unpruned sub-sampling is greater than
that of pruned pre-sampling, then it is reasonable to conclude that the increase
in execution time is not due to the size of the pruning set.

Table 4.10 shows the execution time of sub-sampling without pruning and
pre-sampling with pruning. Measured time includes the time required to infer
and, for pre-sampling, prune a model, along with small account keeping over-
heads. The time taken to read data from disk is not included.

Unfortunately, the system on which the earlier experiments were performed
was not available at the time of these subsequent experiments. Therefore, these
results are not directly comparable to those previously presented in the chapter.
For example, on the Connect-4 data set, the time taken in this investigation to
infer models using sub-sampling without pruning is greater than that taken to
infer pruned sub-sample models in Section 4.5.3.

Comparisons of execution time are made at the smallest and largest sample
size. These sizes are chosen as they can be expected to present the extremes of
the effect of pruning set size. At the smallest sample size, the difference between
the sample size and pruning set size of sub-sampling is the greatest, and, at the
largest sample size, is least.

The results show that sub-sampling without pruning has greater execution

time than pre-sampling with pruning. Although there is little difference in
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Table 4.10: Execution times of pruned pre-sampling (PP) and unpruned sub-

sampling (US) at the smallest and largest sample sizes

Smallest Largest

Data Set PP US PP Us
Adult 0.08 | 10.47 4.05 11.94
Census Income 0.27 | 185.65 | 86.16 | 187.14
Connect-4 0.12 | 2.71 4.44 5.94
Cover Type 1.41 | 1236.00 | 1047.40 | 1861.96
Distinct Boundary | 1.29 | 219.33 | 269.72 | 275.23
Fuzzy Boundary 1.26 | 115.71 | 333.79 | 335.98
IPUMS 0.35| 62.86 38.05 91.92
Random Binary 1.76 | 7.60 171.33 | 90.91
Shuttle 0.07 | 0.70 3.89 4.42
Sleep 0.20 | 228.47 | 199.99 | 237.84
Waveform 1.49 | 847.28 | 1336.40 | 1713.63

121




execution time at the largest sample size on the Fuzzy Boundary and Shuttle
data sets, the execution time of sub-sampling is often substantially larger than
that of pre-sampling. The only occasion where sub-sampling without pruning
was faster than pre-sampling with pruning was the Random Binary data set at
the largest sample size. These results suggest that the longer execution times
of sub-sampling than pre-sampling reported in Section 4.5.3 are not due to the

disparity in pruning set size, and are therefore due to the sampling methodology.

4.6 Conclusions

Experiments were performed to compare two sampling methodologies and no
sampling, with respect to accuracy, model size, and execution time.

The results show sub-sampling produces models that are more accurate than
pre-sampling. Sub-sampling also produces more descriptive models than pre-
sampling. When models built with sub-sampling are at least as accurate as those
built with no sampling, the sub-sampling models are generally more concise.
This is may be due to sub-sampling building trees that are more susceptible to
pruning.

When it is acceptable to build models with accuracy less than that obtain-
able without using sampling, the results suggest a practitioner could have high
confidence in the sub-sampling methodology producing models within bounded
accuracy loss of one, two, and five per cent. Pre-sampling also generally pro-
duces models within two and five per cent bounded accuracy loss, but the results
do not suggest confidence can be had in the ability of pre-sampling to produce
models with only one per cent bounded accuracy loss.

The cost of the extra confidence in sub-sampling is increased execution time.
Sub-sampling often takes substantially longer to execute than pre-sampling, and
occasionally longer than no sampling. However, at the minimum sizes required

for two and five per cent bounded accuracy loss, sub-sampling takes less time to
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execute than no sampling, excepting the anomalous Connect-4 data set.

The results also show occasions where, if learning curves were used, pre-
sampling would take longer to execute than no sampling. There is also an oc-
casion where learning curve methodologies are likely to detect convergence, but
then miss a substantial gain in accuracy with larger samples. This raises ques-
tions as to whether learning curves may contain many local maxima. Although
local maxima do not often appear on a learning curve when viewed on a large
scale, they may exist on a small scale. This could cause significant problems for
many learning curve algorithms.

The results presented in Section 4.5.1 showed that it is possible to use sub-
sampling to build trees that perform as well as no sampling using fewer instances
at each node. However, the implementation used in these experiments employs
a relatively expensive method of selecting a sample. It may be possible to de-
crease execution time by selecting samples using a less computationally complex
method.

On the other hand, the fact that the implementation of sub-sampling uses a
simple method of selecting instances, yet still occasionally has greater accuracy
than no sampling raises the possibility that more complex methods of selecting
a sample could potentially make sub-sampling even more accurate. The cost of
this is likely to be increased execution time.

Neither sampling method provides overwhelming evidence of its ability to
solve the problem of large data. Pre-sampling is likely to be more practical in
terms of time, but comes at a significant risk of substantial accuracy loss. The
fact that on two of the eleven data sets pre-sampling could not produce models
with accuracy within one per cent of that obtainable with the full training set
is concerning. Sub-sampling can produce highly accurate models with a small
sample size, but comes at the cost of high execution time. Given that execution

time is often a limiting factor in the application of learning algorithms, it is
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difficult to suggest that sub-sampling, regardless of its potential to boost accu-
racy, can be used with massive data sets. However, it must be remembered that
sub-sampling has the distinct advantage that it does not require all instances
to be stored in main memory. This can allow sub-sampling to learn from much
larger data sets than methods that require all data be retained in core memory.

It must also be remembered that the methods used to select a sample differ
between pre-sampling and sub-sampling. Pre-sampling selects instances totally
at random without replacement, potentially skewing class distributions. Sub-
sampling selects instances disproportionately, attempting to make the distribu-
tion in the sample as even as possible across classes. Although it is plausible
that these differences in sample selection contribute to the differences between
pre-sampling and sub-sampling shown in the results, it is unlikely that this is
the main cause of the disparities. It is much more likely that the ability of
sub-sampling to in effect use many more instances than pre-sampling during

induction results in the differences between sampling methodologies.
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Chapter 5
Improving Sub-Sampling

The experiments performed in Chapter 4 showed the accuracy of models built
using sub-sampling to be generally greater and more reliable than that of models
built using pre-sampling. Sub-sampling also had the significant benefit that,
at times, it produced models with greater accuracy than those obtained when
learning from the full training set without sampling. This fact alone makes sub-
sampling a method worth exploring. However, sub-sampling does have some
problems.

One of these problems is execution time. The results of Section 4.5.3 showed
occasions where sub-sampling took longer to execute than learning from the full
training set without sampling. This is obviously undesirable, and it is reason-
able to expect there may be situations where the risk of greater execution time
outweighs any benefits, such as increased accuracy, which could be obtained by
using sub-sampling.

A second problem with sub-sampling is the use of the same sample size
throughout the learning process. Although the results of Chapter 4 showed
this is often effective, using a static sample size has a number of potentially
detrimental implications. For example, it is possible that a much greater num-

ber of instances will be used for inference than necessary, resulting in needless
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expenditure of computational resources.

This chapter investigates three modifications to sub-sampling aimed at rem-
edying these problems. The first modification investigates the effects of dispro-
portionate sampling and non-replacement. Since both increase time required
to sample, it is worth evaluating the effect each has on the performance of sub-
sampling. This modification will also provide evidence regarding concerns raised
in Chapter 4 that the results presented in that Chapter may have been con-
founded by the different sample selection strategies employed by pre-sampling
and sub-sampling. The second and third modifications investigate ways of dy-
namically calculating sample size: one uses a varying proportion of available
data, the other a statistical determination of a “sufficient” sample. Experiments

are performed to empirically evaluate these modifications.

5.1 Definitions

Throughout this chapter a number of terms with specific meanings are used.
Some of these have been previously defined in Section 4.1. The remainder are
defined here.

Disproportionate sampling - selecting a sample such that instance counts for
each class are kept as equal as possible.

Sub-sampling - any sampling methodology where a sample of instances is
selected at various points throughout the learning process.

Standard sub-sampling - the implementation of sub-sampling where a fixed
size, disproportionate sample are taken at every point in the algorithm. This is

the implementation used both in CART [13] and Chapter 4.

126



5.2 Effects of Disproportionate Sampling and
Replacement

One of the results of the Chapter 4 experiments involving standard sub-sampling
was that it occasionally had greater execution time than learning from the full
training set. Indeed, it could be argued that the purpose of sampling is to reduce
execution time, and a methodology that cannot guarantee this is of limited
utility. On the other hand, it could also be argued that it is highly desirable
for a sampling methodology to build accurate models. Sub-sampling excelled at
this. This then leaves the problem of how the execution time of sub-sampling
can be reduced. However, before a remedy can be sought, the source of the

problem must be identified.

5.2.1 Potential Factors Increasing Execution Time

Before examining potential problems with the learning algorithm, it is prudent
to first eliminate any possibility that the results were influenced by factors unre-
lated to the learning algorithm. All experiments conducted in Chapter 4, except
those noted in Section 4.5.5, were executed on the same hardware. Binary exe-
cutables were created using the same compiler, with the same settings. Only the
learning program and necessary system processes executed during experimen-
tation. To confirm this, experiments were re-run, producing almost identical
results. This then suggests that the occasional long execution time of sub-
sampling is likely caused by problems with the learning algorithm, rather than
external influences.

The implementation of sub-sampling used in this research was performed
within the existing framework of C4.5. Thus, to convert standard C4.5 (no sam-
pling) to sub-sampling requires only a small modification of the procedure used

to build a node. The modification needs only to limit the data used to deter-
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mine worth of a split to the selected sample. Such a small alteration is unlikely
to significantly impact execution time of the induction process. However, it is
possible that the sampling process itself is the cause of increased execution time.

There are two reasons why the sampling process might cause sub-sampling
to have longer execution time than no sampling. The first is that models built
using sub-sampling are not as broad as those built by no sampling. Broader trees
result in data being divided earlier, and, since the computational complexity of
finding a split is greater than O(n), greater division of data can be expected
to reduce execution time. As discussed in Section 4.5.3, this appears to be the
cause of the unusual behaviour of execution time on the Connect-4 data set.

However, making sub-sampling infer broader trees requires either introducing
a learning bias toward broader trees, or enabling continuous attributes to be split
into more than two intervals at each node. The first of these options defies the
ethos followed many learning algorithms, including C4.5, of selecting the best
possible split. The second requires a fundamental change in the base learning
algorithm, and would result in no difference with domains consisting of only
discrete attributes. Thus, forcing sub-sampling to build broader trees cannot be
considered a viable option.

The second reason why sub-sampling could have longer execution time than
no sampling is that the overhead associated with sampling may outweigh any
reduction in execution time gained by using fewer instances to infer splits. This
might be remedied by using a less computationally expensive method of select-
ing samples. In standard sub-sampling, disproportionate samples are selected,
so that the class distribution of the sample is as uniform as possible. Sam-
pling in this manner requires maintenance of lists of instances in each class, and
calculation of the number of instances to be selected from each class. If the
available data does not contain enough instances of a particular class to meet

this requirement, then all instances of that class are selected, and the number of
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instances required for remaining classes recalculated. This process is repeated
until all remaining classes can fill their quota.

Standard sub-sampling also performs sampling without replacement, requir-
ing maintenance of a record of instances already selected for a sample. Although
maintenance of such lists is an uncomplicated process, the need to continually
update these lists can potentially cumulate to a substantial amount of time.

A simpler and likely quicker method than that used in standard sub-sampling
is to select a sample without disproportionate class representation and with re-
placement. This eliminates the need to maintain records of selected instances
and lists of instances in each class. It also eliminates the need for calculation
and subsequent recalculation of the number of instances required for each class.
This was studied by Guerts [51], where models built with samples taken with
replacement were compared to models built with samples taken without replace-
ment with smaller training sets. However, this disparity in training set size may
bias results toward models built using replacement. Also, the experiments only
investigated training sets up to 6,000 instances.

Such a modification can be expected to substantially reduce the overhead
required for sample selection. However, it is plausible that part of the reason
standard sub-sampling produces accurate models is due to the way in which
samples are selected. Therefore, it is possible that making such a modification
may have a negative impact on accuracy, and may even increase execution time

if it causes thinner trees to be built.

5.2.2 Experiments

Experiments were performed to compare standard sub-sampling with three ver-
sions of sub-sampling with various combinations of the use of disproportionate

sampling and non-replacement. These are:
e Non-Replacement sub-sampling — samples are selected randomly without
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replacement and without regard to class distribution.

e DisProportionate sub-sampling (DP)— disproportionate samples are se-

lected with replacement.

o Simple sub-sampling — samples are selected with the least amount of
overhead possible by selecting instances with replacement and without

disproportionate sampling.

Note that standard sub-sampling selects disproportionate samples without re-
placement.

This is a 2x2 experimental design, comparing replacement against non-replacement
and disproportionate against non-disproportionate sampling. Comparisons be-
tween the sub-sampling types are made in regard to execution time, model
complexity, and accuracy.

The methodology and data sets used for these experiments are the same as
those used in Chapter 4. To allow comparison between these experiments and
the results of previous experiments, the sample sizes used in Chapter 4 are again

employed.

5.2.3 Results

Graphs show accuracy and time to infer one model in relation to sample size.
Results are averaged across the thirty runs. Each graph shows results for stan-
dard sub-sampling, simple sub-sampling, non-replacement, sub-sampling, DP

sub-sampling, and, as a baseline, no sampling.

Accuracy

Figures 5.1-5.11 plot, for each data set, accuracy of no sampling and standard,

simple, non-replacement, and DP sub-sampling.
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Figure 5.1: Accuracy of sub-sampling variants on the Adult data set
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Figure 5.2: Accuracy of sub-sampling variants on the Census Income data set
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Figure 5.3: Accuracy of sub-sampling variants on the Connect-4 data set
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Figure 5.4: Accuracy of sub-sampling variants on the Cover Type data set

132



0.9991

0.9990 &~
0.9989 =
0.9988 =
&
= 0.9987 =
=
S 0.9986 =
<t
0.9985 f Simple =
0.9984 Standard --%-- 4

/! Replacement --%--

' CDP 5 A
0'9983T No (1,066,666) - —
0.9982 | | | | | | | | |

1000 4000 16000 64000 256000 1024000

Sample Size
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Figure 5.6: Accuracy of sub-sampling variants on the Fuzzy Boundary data set
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Figure 5.7: Accuracy of sub-sampling variants on the IPUMS data set
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Figure 5.8: Accuracy of sub-sampling variants on the Random Binary data set
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Figure 5.10: Accuracy of sub-sampling variants on the Sleep data set
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Figure 5.11: Accuracy of sub-sampling variants on the Waveform data set

The figures show that replacement and disproportionate sampling often have
little effect on the accuracy of sub-sampling. Of the eleven data sets, the mag-
nitude of the effects of the sub-sampling variants appears to be large on only
four — Cover Type, IPUMS, Shuttle, and Sleep.

A summary of the effect sub-sampling variants have on accuracy is given in
Table 5.1. Results are presented as win:loss records, with wins attributed to
the variant specified in the row. The table shows that standard sub-sampling
is generally more accurate than other variants. It is interesting that standard
sub-sampling is less accurate than non-replacement sub-sampling only two more
times than it is simple sub-sampling. This suggests that disproportionate sam-
pling is more beneficial to accuracy than non-replacement, and is supported by
the close win:loss record between standard and DP sub-sampling.

It is interesting that on data sets where the accuracy of standard sub-
sampling consistently equals that of no sampling, simple sub-sampling will also

equal the accuracy of no sampling, but with slightly larger sample size.
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Table 5.1: Effect of sub-sampling variants on accuracy
H Standard ‘ Non-Replacement, ‘ DP ‘ Simple

Standard — 34:10 23:18 | 34:8
Simple 8:34 10:18 19:35 —

The results for the Cover Type data set are surprising. Here, simple sub-
sampling is substantially more accurate than standard sub-sampling for many
sample sizes. Simple sub-sampling also reaches accuracy greater than no sam-
pling with smaller sample size than standard sub-sampling.

Changing the way in which samples are selected made no difference to ac-
curacy for the Random Binary set. This may be due to the apparent “all-or-
nothing” behaviour of sub-sampling methodologies on this data set. The results
suggest that with a sample of 1,000 instances, both sub-sampling versions can-
not justify inference of any more than a decision stump. However, samples of
2,000 or more instances are sufficient to infer a model with exceptional predictive
accuracy.

Table 5.2 shows the sample size required for standard sub-sampling and
simple sub-sampling to reach bounded accuracy loss from no sampling of one,
two, and five per cent. The results show that both versions of sub-sampling
almost always reach one, two, or five per cent bounded loss with the same
sample size. The only difference is on the Cover Type data set, where simple
sub-sampling is within one and two per cent accuracy loss bounds with a smaller

sample size than standard sub-sampling.

Model Complexity

Figures 5.12-5.22 plot, for each data set, the mean number of nodes inferred for
no sampling and standard, simple, non-replacement, and DP sub-sampling.

The figures show that the type of sub-sampling often has a substantial effect
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Table 5.2: Comparison of sample size required to achieved given bounded accu-
racy loss between standard and simple sub-sampling

1 per cent loss 2 per cent loss 5 per cent loss

Data Set Std  Simple Std  Simple | Std  Simple
Adult 2,000 2,000 | 1,000 1,000 || 1,000 1,000
Census Income 1,000 1,000 1,000 1,000 || 1,000 1,000
Connect-4 8,000 8,000 | 4,000 4,000 || 1,000 1,000
Cover Type 64,000 16,000 || 64,000 8,000 | 1,000 1,000

Distinct Boundary || 1,000 1,000 1,000 1,000 | 1,000 1,000
Fuzzy Boundary 1,000 1,000 1,000 1,000 | 1,000 1,000

IPUMS 1,000 1,000 || 1,000 1,000 | 1,000 1,000
Random Binary 2,000 2,000 | 2,000 2,000 | 2,000 2,000
Shuttle 1,000 1,000 || 1,000 1,000 || 1,000 1,000
Sleep 1,000 1,000 || 1,000 1,000 | 1,000 1,000
Waveform 1,000 1,000 || 1,000 1,000 | 1,000 1,000
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Figure 5.17: Mean nodes inferred by sub-sampling variants on the Fuzzy Bound-

ary data set
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Figure 5.19: Mean nodes inferred by sub-sampling variants on the Random

Binary data set
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Figure 5.22: Mean nodes inferred by sub-sampling variants on the Waveform

data set

on the number of nodes inferred. It is interesting that on the Shuttle data set,
both simple and standard sub-sampling infer more nodes than no sampling, but

non-replacement and DP sub-sampling infer fewer.

Execution Time

Figures 5.23-5.33 plot, for each data set, execution time for no sampling and
standard, simple, non-replacement, and DP sub-sampling. Measured execution
time includes the time required to build and prune a model, and small associated
overheads. The time to initialise data structures, read data from disk, and
evaluate model accuracy is not included in this measurement.

The figures show that the type of sub-sampling affects execution time. How-
ever, the results are not unexpected. A summary of the effect sub-sampling
variants have on execution time is given in Table 5.3. Results are presented

as win:loss records, with wins attributed to the variant specified in the row.
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Figure 5.24: Mean model building time for sub-sampling variants on the Census

Income data set
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Figure 5.28: Mean model building time for sub-sampling variants on the Fuzzy

Boundary data set
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Figure 5.31: Mean model building time for sub-sampling variants on the Shuttle
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Figure 5.32: Mean model building time for sub-sampling variants on the Sleep

data set
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Figure 5.33: Mean model building time for sub-sampling variants on the Wave-

form data set

Table 5.3: Effect of Sub-sampling Variants on Execution Time
H Standard ‘ Non-Replacement ‘ DP ‘ Simple

Standard — 29:62 14:77 | 19:72
Simple 72:19 58:33 34:57 —

The table shows that both non-disproportionate sampling and sampling with
replacement can be expected to reduce execution time.

The results show that simple sub-sampling often requires less execution time
than standard sub-sampling. Of the eleven data sets, five show simple sub-
sampling to be quicker than standard sub-sampling at every sample size. Com-
paring each sample size shows simple sub-sampling is quicker than standard
sub-sampling on 72 occasions and slower on 19. Occasions where simple sub-
sampling takes longer than standard sub-sampling generally equate to a small

increase in execution time.
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Since the problem at hand is execution time, it is important to make note
of those occasions where standard sub-sampling is slower than no sampling.
Restricting the view to these occasions shows that of the 28 occurrences, simple
sub-sampling reduces the execution time compared to standard sub-sampling 24
times, and increases it only four times. On eight of these occasions, execution
time is reduced to less than that of no sampling.

At the smallest sample size, simple sub-sampling is faster than standard sub-
sampling on all but the Waveform data set. At the largest sample size, simple
sub-sampling is faster than standard sub-sampling on each data set.

It is interesting that simple sub-sampling generally takes longer to execute
than DP sub-sampling. This was investigated, and found to be due to two
reasons. When the execution time of simple sub-sampling is a substantial pro-
portion larger than that of DP sub-sampling, it is because DP sub-sampling
infers many fewer nodes. When the execution time of the sub-sampling variants
is close, the number of nodes in the unpruned models are similar. However,
DP sub-sampling tends to have more leaves around the middle of the tree than
simple sub-sampling. This may result in greater execution time higher in the
tree, and less lower in the tree.

Table 5.4 shows the execution time required to achieve accuracy within a
given bounded loss for simple and standard sub-sampling. Many entries are
consistent across different bounds because, as shown in Table 5.2, all bounds
were often achieved with the same sample size.

The table shows simple sub-sampling is quicker than standard sub-sampling
with one per cent accuracy loss on eight data sets, and slower on three. With
both two and five per cent accuracy loss, simple sub-sampling is quicker on ten
data sets, and slower on only the Waveform data set. Comparing the execution
time taken to build the smallest model after which accuracy loss was consistently

no more than one per cent for both types of sampling, shows simple sub-sampling
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Table 5.4: Execution time required to achieve bounded accuracy loss

1 per cent loss 2 per cent loss 5 per cent loss
Data Set Std Simple Std Simple Std Simple
Adult 12.68 12.44 12.77 12.32 12.77 12.32
Census Income 100.18 96.51 100.18 96.51 100.18 96.51
Connect-4 14.59 20.39 34.43 31.88 29.68 29.32
Cover Type 1603.14 1621.56 | 1603.14 1526.72 | 1603.14 1387.83
Distinct Boundary | 232.02  209.53 | 232.02 209.53 | 232.02  209.53
Fuzzy Boundary 127.07  82.80 127.07  82.80 | 127.07  82.80
IPUMS 73.65 71.03 73.65 71.03 73.65 71.03
Random Binary 140.20  133.77 | 140.20 133.77 | 140.20 133.77
Shuttle 1.24 1.04 1.24 1.04 1.24 1.04
Sleep 232.56  230.89 | 232.56  230.89 | 232.56  230.89
Waveform 1035.46 1214.73 | 1035.46 1214.73 | 1035.46 1214.73

takes, on average, 1.5% less time than standard sub-sampling. With two per
cent bounded accuracy loss, simple sub-sampling takes 6.5% less time, and with

five per cent, 5.9% less time.

5.2.4 Summary

The modifications made to the way in which samples are selected with sub-
sampling often have little impact on accuracy. Occasionally, simple sub-sampling
produced models with greater accuracy, but more often than not resulted in a
decrease in accuracy. However, the purpose of these experiments was to investi-
gate the effects of replacement and disproportionate sampling on sub-sampling.
The results suggest that non-disproportionate sampling can be expected to have

a greater detriment on accuracy than sampling with replacement. Managing
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replacement also appears to require more execution time than disproportionate
sampling. This should not be taken as suggesting that disproportionate sam-
pling and sampling without replacement are not valuable tools, but rather that
the need for them should be carefully considered.

These results also show that the results of Chapter 4 are not substantially
affected by the method used to select samples. Although it is reasonable to
expect that the method of selecting a sample had some influence on the results
of the previous Chapter, the results presented here show the magnitude of the

effects are insufficient to substantially alter the results of Chapter 4.

5.3 Sampling Using Variable Proportions

One of the issues with standard sub-sampling is that the same sample size is
used at each node. Although this is a straight-forward methodology, and, as
evidenced in Section 4.5.1, can produce accurate models, the implications of
using a static sample size may be undesirable. For example, given two nodes of
the same depth, it may be unreasonable to use the same sample size if the number
of instances in the available data of these nodes differs markedly. Rather than
selecting a number of instances, it may be more sensible to select a proportion
of instances.

However, selecting a fixed proportion of instances is just as undesirable as
selecting a fixed number of instances. This is because, as depth increases, the
number of instances in the available data decreases. Therefore, using the same
proportion of instances low in the tree as used high in the tree could result in
unreasonably small sample sizes. For example, consider two nodes: one high in
the tree with one million instances in the available data; the other lower in the
tree with 1,000 instances in the available data. Selecting one per cent of the data
at the higher node would result in 10,000 instances being used to determine the

split. This may be a large enough sample to allow a reasonable split to be found.
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However, at the lower node, selecting one per cent of instances would result in
the split being determined using only 10 instances. Such a small sample is much
more likely to be insufficient to determine an appropriate split.

Also, it can be expected that the effect of selecting a poor split at a lower
node may be more detrimental to the accuracy of the final model than selecting
a poor split at a higher node. If a poor split is selected high in the tree, it is
likely that each branch of that node will contain substantial amounts of data.
This allows an opportunity for the poor split to be corrected by lower nodes.
However, such an opportunity is unlikely to be available at lower nodes, where
there is less data.

It is therefore reasonable that, as depth increases, a greater proportion of the
available data should be used so as to reduce the possibility of a poor split being
selected. Such a methodology will hereafter be referred to as variable proportion
sampling.

In effect, a similar phenomenon occurs with standard sub-sampling, since a
fixed sample size is used and the amount of available data necessarily decreases
with increasing depth. However, with standard sub-sampling, the practitioner
only has control over the proportion of instances used at the root node.

It is also unreasonable to use a proportion of the available data when the
amount of data is small. Hence, a minimum size, below which sampling is not
performed, should be enforced.

The use of an increasing proportion of available data for inference may not
only be more intuitive than using a static size, but also allows practitioners
greater control over the workings of sub-sampling. However, this additional

control also means the practitioner must specify additional parameters.
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Calculating Sample Size

Given that an increasing proportion of instances will be used, the problem re-
mains of how to determine sample size. Two methods for calculating sample
size s are proposed:

Linear:

s =np(d+1)

Geometric:

s = ,np2d+1

where n is the number of instances in the available data, d is the depth of the
node with the root node being depth zero, and p is the proportion of instances
to use at the root node. If s is less than a practitioner specified minimum sample

size, all available data will be used.

5.3.1 Experiments

Experiments were performed to compare proportional sampling to both standard
sub-sampling and no sampling. The proportion of instances to use at the root
node will hereafter be referred to as the initial proportion. The initial proportions
investigated were one, two, five, and ten per cent, using both linear and geometric
calculations of sample size. A minimum sample size of 100 instances was used
in all experiments.

The experiments were performed using ten-times three-fold cross-validation.

All data sets used in previous experiments were used in these experiments.

5.3.2 Results

Tables compare the accuracy and execution time of variable proportion sampling
to that of no sampling. Since there is no direct mapping of sample sizes used

in previous sub-sampling experiments to these experiments, it is inappropriate
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Table 5.5: Accuracy of variable proportion sampling using a Linear progression

with varying initial proportions

Data Set No | Standard | 1% 2% 5% 10%

Adult 0.8602 | 0.8589 0.8484 | 0.8462 | 0.8444 | 0.8439
Census Income 0.9526 | 0.9526 0.9456 | 0.9447 | 0.9482 | 0.9517
Connect-4 0.7981 | 0.7999 0.7824 | 0.7842 | 0.7860 | 0.7962
Cover Type 0.9375 | 0.9406 0.9369 | 0.9390 | 0.9379 | 0.9375

Distinct Boundary || 0.9990 | 0.9991 0.9987 | 0.9989 | 0.9990 | 0.9990
Fuzzy Boundary 0.9985 | 0.9985 0.9985 | 0.9985 | 0.9985 | 0.9985

IPUMS 0.9282 | 0.9284 0.9283 | 0.9287 | 0.9286 | 0.9281
Random Binary 1.0000 | 1.0000 1.0000 | 1.0000 | 1.0000 | 1.0000
Shuttle 0.9996 | 0.9997 || 0.9991 | 0.9991 | 0.9994 | 0.9995
Sleep 0.7299 | 0.7310 0.7289 | 0.7288 | 0.7293 | 0.7300
Waveform 0.9857 | 0.9857 | 0.9850 | 0.9849 | 0.9856 | 0.9857

to compare variable proportion sampling to all sample sizes used with standard
sub-sampling. Hence, only the sample size with the greatest predictive accuracy
in Section 4.5.1 is used for comparison. In the event that the greatest accuracy
is achieved with more than one sample size, the smallest sample size with that

accuracy is used for comparisons of execution time.

Accuracy

Tables 5.5 and 5.6 show the accuracy of variable proportion sampling, using
a linear and geometric progression respectively. The results are compared to
the accuracy of no sampling, and the highest accuracy achieved using standard
sub-sampling. The latter two results are taken from Chapter 4.

The results show that variable proportion sampling with a linear progression

is generally less accurate than no sampling. Linear variable proportion sampling
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Table 5.6: Accuracy of variable proportion sampling using a Geometric progres-

sion with varying initial proportions

Data Set No | Standard | 1% 2% 5% 10%

Adult 0.8602 | 0.8589 0.8502 | 0.8557 | 0.8585 | 0.8588
Census Income 0.9526 | 0.9526 0.9515 | 0.9519 | 0.9515 | 0.9519
Connect-4 0.7981 | 0.7999 0.7964 | 0.7965 | 0.7966 | 0.7979
Cover Type 0.9375 | 0.9406 0.9376 | 0.9376 | 0.9377 | 0.9375

Distinct Boundary || 0.9990 | 0.9990 0.9990 | 0.9990 | 0.9990 | 0.9990
Fuzzy Boundary 0.9985 | 0.9985 0.9985 | 0.9985 | 0.9985 | 0.9985

IPUMS 0.9282 | 0.9284 0.9278 | 0.9275 | 0.9283 | 0.9282
Random Binary 1.0000 | 1.0000 1.0000 | 1.0000 | 1.0000 | 1.0000
Shuttle 0.9996 | 0.9997 || 0.9993 | 0.9993 | 0.9995 | 0.9995
Sleep 0.7299 | 0.7310 0.7300 | 0.7301 | 0.7296 | 0.7302
Waveform 0.9857 | 0.9857 | 0.9856 | 0.9857 | 0.9857 | 0.9857
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with an initial proportion of one per cent is less accurate than no sampling eight
times and more accurate only once, with two ties. With two per cent initial
proportion, the linear progression is less accurate seven times and more accurate
twice, with two ties. With five per cent, it is less accurate six times and more
accurate twice, with three ties. With ten per cent, it is less accurate five times
and more accurate once, with five ties. Comparing variable proportion sampling
with a linear progression to the most accurate result with standard sub-sampling
is even less favourable. An initial proportion of one per cent is less accurate nine
times and never more accurate, with two ties. Starting proportions of two and
five per cent both result in variable proportion sampling being less accurate eight
times and more accurate once, with two ties. An initial proportion of ten per
cent is less accurate eight times, with three ties.

The results when using a geometric progression show a similar trend. Com-
pared to no sampling, an initial proportion of one per cent is more accurate twice
and less accurate six times, with three ties. Starting proportions of two and five
per cent are both more accurate twice and less accurate five times, with four ties.
Ten per cent is more accurate once and less accurate four times, with six ties.
Compared to the most accurate standard sub-sampling, an initial proportion of
one per cent is less accurate eight times and never more accurate, with three
ties. Starting proportions of two and five per cent are less accurate seven times
and never more accurate, with four ties. Ten per cent is less accurate seven
times and never more accurate, with four ties.

The results suggest that the use of variable proportion sampling is likely to
cause a loss in accuracy when compared to no sampling. However, the differ-
ence in accuracy is relatively small. Comparing levels of accuracy loss from no
sampling shows that both progressions of variable proportion sampling perform
well. With a linear progression, initial proportions of one, two, and five per

cent perform within one per cent bounded accuracy loss on nine occasions, and
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outside this twice. An initial proportion of ten per cent is within this bound
ten times, and outside it once. When looking at two per cent bounded accuracy
loss, all initial proportions are within this bound on all data sets. The trend is
stronger when a geometric progression is used. There is only one occasion with
all initial proportions where accuracy is not within one per cent of that obtained
with no sampling. This occurs with one per cent initial proportion on the Adult
data set.

Comparing initial proportions of linear and geometric progressions to each
other shows that a geometric progression generally produces more accurate mod-
els. With an initial proportion of one per cent, the geometric progression has
greater accuracy on nine data sets, and never has less accuracy, with two ties.
With an initial proportion of two per cent, the geometric progression has greater
accuracy seven times, with two ties and two losses. With an initial proportion of
five per cent, geometric has six wins, three ties, and two losses. With an initial
proportion of ten per cent, it has five wins and six ties, with no losses.

Thus, it may be said that a geometric progression produces models with
greater predictive accuracy than a linear progression. Both generally produce
models with small accuracy loss, although a geometric progression is slightly
more consistent in this measure.

Comparing the accuracy obtained using differing initial proportions with a
linear progression shows that larger initial proportions generally result in more
accurate models. Compared to one per cent, five per cent is more accurate eight
times and less accurate once, with two ties. Compared to two per cent, five per
cent is more accurate six times and less accurate three times, again with two
ties. Compared to one per cent, ten per cent is more accurate seven times and
less accurate twice, with two ties. Compared to two per cent, ten percent is
more accurate six times and less accurate three times, with two ties. Compared

to five per cent, it is more accurate five times and less accurate three times, with
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three ties.

The results show a similar pattern with a geometric progression. Here, an
initial proportion of five per cent is more accurate than one per cent six times
and less accurate once, with four ties. Compared to two per cent, five per cent
is more accurate five times and less accurate twice, with four ties. Compared to
one per cent, ten per cent is more accurate seven times and less accurate once,
with three ties. Compared to two per cent, it is more accurate five times and
less accurate once, with five ties. Compared to five per cent, it is more accurate
four times and less accurate twice, with five ties.

The trend for larger initial proportions to build models with greater pre-
dictive accuracy might at first be taken as evidence that selecting the correct
split high in the tree is more important than suggested in previous discussions.
However, this is not necessarily the case. With a linear progression, an initial
proportion of one per cent will not result in all the available data being used until
nodes of depth 99 are built, assuming there is still a greater number of available
instances than the minimum sample size. With two per cent initial sample size,
this occurs at depth 49. Producing decision trees of these sizes requires either
exceptionally complex concepts in the data, high noise, or repeated selection of
poor splits. Therefore, it is likely that the condition forcing use of all available
data will be the imposition of a minimum sample size, rather than dictation by
a linear progression. However, this phenomenon is likely to be less strong when
using an initial proportion of five per cent, as all available data will be used from
depth 19 onward. With a initial proportion of ten per cent, it occurs at depth
nine.

This argument may also explain why the trend for five per cent initial propor-
tion to be more accurate is not as strong when using a geometric progression. A
geometric progression results in all available data being used at shallower depths

than a linear progression: depth 7 for one per cent initial proportion; depth 6
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Table 5.7: Mean nodes inferred by variable proportion sampling using a Linear

progression

Data Set No Standard 1% 2% 5% 10%
Adult 600.4 486.8 556.2 207.3 215.6 184.3
Census 1634.5 1536.8 210.3 171.3 168.8 675.5
Connect-4 4708.2 3302.8 2796.1 | 2815.6 | 2856.4 | 3151.7
Cover Type | 23730.4 22141.2 23049.9 | 22633.9 | 23601.8 | 23862.6
Distinct 1430.7 1444.9 1299.9 | 1372.8 | 1438.8 | 1461.7
Fuzzy 454.9 454.7 424.3 456.1 483.3 473.8
IPUMS 1414.4 1418.9 1310.3 | 1329.7 | 1331.9 | 1416.3
Random 78838.3 78801.3 79076.5 | 79055.4 | 78952.3 | 78850.4
Shuttle 46.7 37.3 48.1 52.7 55.6 51.3
Sleep 9212.3 9131.7 9167.2 | 9186.6 | 9133.9 | 9203.7
Waveform 4107.5 4015.9 6173.3 | 7434.9 | 4340.5 | 4103.8
VPS fewer than No Sampling 8:3 74 5:6 5:6
VPS fewer than Standard Sub-sampling 5:6 2:6 5:6 4:7

for two per cent; depth 5 for five per cent; and depth 4 for ten per cent.

Model Complexity

Tables 5.7 and 5.8 show the mean number of nodes inferred by variable propor-

tion sampling, using a linear and geometric progression respectively. The results

are compared to those of no sampling, and the result of standard sub-sampling

with the greatest accuracy, taken from Chapter 4.

The results show that variable proportion sampling with a linear progression

infers fewer nodes than no sampling 25 times, and more 19 times. The reverse

is true when compared to standard sub-sampling. When using a geometric



Table 5.8: Mean nodes inferred by variable proportion sampling using a Geo-

metric progression

Data Set No Standard 1% 2% 5% 10%
Adult 600.4 486.8 188.7 257.9 338.5 427.5
Census 1634.5 1536.8 694.9 769.5 646.9 898.0
Connect-4 4708.2 3302.8 3194.2 | 3242.0 | 3237.0 | 3286.5
Cover Type || 23730.4 22141.2 23843.4 | 23804.5 | 23740.7 | 23800.5
Distinct 1430.7 1444.9 1439.3 | 1439.9 | 1434.5 | 1430.3
Fuzzy 454.9 454.7 467.3 467.8 454.7 454.5
[IPUMS 1414.4 1418.9 1435.9 | 1465.5 | 1395.5 | 1418.0
Random 78838.3 78801.3 78827.5 | 78872.3 | 78819.5 | 78873.2
Shuttle 46.7 37.3 51.9 57.3 53.5 50.1
Sleep 9212.3 9131.7 9235.5 | 9191.9 | 9226.1 | 9143.5
Waveform 4107.5 4015.9 4167.0 | 4060.4 | 4028.3 | 4020.8
VPS fewer then No Sampling 4:7 4:7 7:4 7:4
VPS fewer then Standard Sub-sampling 4:7 4:7 5:1:5 6:5
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Table 5.9: Comparison of number of nodes for different initial proportions with

a linear progression

1% | 2% | 5% | 10%

1% | — | 7465 | 83
2% | 47| — | 65| T4
5% | 56| 56| — | 6:5

10% | 3:8 | 4:7 | 5:6 | —

progression, variable proportion sampling infers both fewer and more nodes than
no sampling 22 times. Compared to standard sub-sampling, geometric variable
proportion sampling infers fewer nodes 19 times and more 24, with one tie.

Comparing a linear progression to a geometric progression shows that a linear
progression generally infers fewer nodes. With a initial proportion of one per
cent, linear infers fewer nodes eight times and more three times; with a initial
proportion of two per cent, linear infers fewer nodes nine times and more twice;
with five per cent fewer five and more six times; with ten per cent fewer six
times and more five.

Tables 5.9 and 5.10 compare the number of nodes inferred with different
initial proportions using a linear and geometric progression respectively. The
tables show win:loss records, where wins relate to the initial proportion in the
row inferring fewer nodes than the proportion in the column. The tables show
a weak trend for smaller initial proportions to infer smaller trees with a linear

progression, but no such trend for a geometric progression.

Execution Time

Tables 5.11 and 5.12 show the execution time of variable proportion sampling,
using a linear and geometric progression respectively. The results are compared

to no sampling, and the result of standard sub-sampling with the greatest accu-
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Table 5.10: Comparison of number of nodes for different initial proportions with

a geometric progression

1% | 2% | 5% | 10%

1% | — | 83| 3:8 | 4:7
2% 38| — | 29| 4:7
5% | 83| 9:2 6:5

10% | 7:4 | 74 | 5:6 | —

racy, taken from Chapter 4.

The results show that when a linear progression is used, execution time is
generally less than that of no sampling and the most accurate standard sub-
sampling. A geometric progression is also generally quicker than no sampling,
but is slower than the most accurate standard sub-sampling on more occasions
than it is quicker.

Comparing the same initial proportion between linear and geometric progres-
sions shows the linear progression is generally quicker. With an initial proportion
of one or two per cent, linear is faster than geometric eight times and slower
three. With an initial proportion of five per cent, linear is quicker six times
and slower five. With ten per cent, linear is quicker eight times and slower
three. This is not to be unexpected, as a geometric progression results in more
instances being used to determine a split higher in the tree.

Tables 5.13 and 5.14 compare different initial proportions for linear and ge-
ometric progressions respectively. The tables show win:loss records, where wins
relate to the initial proportion in the row having less execution time than the
proportion in the column. Note that there was one tie when comparing initial
proportions of one per cent and two per cent with a linear progression.

The tables show that smaller initial proportions generally result in less ex-

ecution time. Although the only results that can be considered statistically
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Table 5.11: Execution time of variable proportion sampling using a Linear pro-

gression
Data Set No Standard 1% 2% 5% 10%
Adult 13.26 14.50 11.86 12.13 12.78 12.74
Census 86.61 98.13 96.04 100.53 | 104.74 | 106.83
Connect-4 6.74 6.42 25.82 20.39 12.80 9.26

Cover Type || 1818.31 | 1899.43 | 1897.77 | 1979.06 | 1964.17 | 1914.67

Distinct 289.65 232.02 207.08 | 222.33 | 240.97 | 260.44
Fuzzy 359.93 127.07 111.72 | 123.56 | 188.23 | 247.41
IPUMS 86.19 85.53 71.35 74.31 69.99 76.39
Random 181.70 140.20 125.71 | 108.64 | 137.74 | 155.38
Shuttle 5.15 1.38 1.15 1.15 1.66 2.24

Sleep 240.80 237.59 231.32 | 195.95 | 227.77 | 235.76

Waveform 1688.54 | 1024.99 || 1436.20 | 1760.54 | 1050.16 | 1025.70
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Table 5.12: Execution time of variable proportion sampling using a Geometric

progression
Data Set No Standard 1% 2% 5% 10%
Adult 13.26 14.50 12.09 13.67 14.25 13.66
Census 86.61 98.13 91.37 90.86 80.41 94.06
Connect-4 6.74 6.42 13.00 11.98 10.52 8.98
Cover Type || 1818.31 | 1899.43 | 2042.73 | 2067.22 | 1739.75 | 1885.19
Distinct 289.65 232.02 240.60 | 243.35 | 239.57 | 262.31
Fuzzy 359.93 127.07 214.49 | 227.76 | 269.17 | 278.31
IPUMS 86.19 85.53 85.81 88.21 77.74 79.41
Random 181.70 140.20 14543 | 147.69 | 161.93 | 165.18
Shuttle 5.15 1.38 1.39 1.64 2.42 3.18
Sleep 240.80 237.59 234.99 | 235.86 | 232.97 | 238.24
Waveform 1688.54 | 1024.99 || 1125.21 | 1178.27 | 1014.64 | 1070.50

Table 5.13: Comparison of execution times for different initial proportions with

a linear progression

1% | 2% | 5% | 10%

1% | — | 73| 74| 9:2
2% 37| — | 74| 83
5% | 47 | 47| — | T4

10% | 229 | 3:8 | 4:7| —
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Table 5.14: Comparison of execution times for different initial proportions with

a geometric progression

1% | 2% | 5% | 10%

1% — | 9:2 | 47| 74
2% | 29| — | 47| 65
5% | 4T | T4 — | 92

10% | 714156129 | —

significant at the 0.05 level with a one-tailed binomial sign test are those with
ratios of 9:2 (p = 0.0327), it is clear that increasing initial proportion when
using a linear progression generally increases execution time. The trend also
exists with a geometric progression, although it is not as strong. This behaviour
is likely due to the reduced time required at nodes high in the tree.

The results for the Connect-4 data set again show the sampling methodology
under investigation has much greater execution time than no sampling. For both
types of progressions, an increase in initial proportion relates to a decrease in

execution time.

5.3.3 Summary

The results show that variable proportion sampling can be expected to perform
with accuracy less than, but close to, that obtained without sampling. The
type of progression makes little difference, although geometric is slightly better.
Taking execution time into account shows both to be generally quicker than no
sampling, with linear being slightly quicker than geometric.

In terms of accuracy, variable proportion sampling fares a little worse against
the best result for standard sub-sampling than it does against no sampling. This

is because the bar is raised slightly by using the best standard sub-sampling.
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However, although accuracy is generally worse, the difference is small. In terms
of execution time, linear is often quicker, while geometric is often slower.

Comparing types of progression shows that a geometric progression is gen-
erally more accurate than a linear progression, while a linear progression is
generally quicker.

Larger initial proportions also generally result in more accurate models. This
is not to be unexpected, as increasing the initial proportion reduces the difference
in behaviour between variable proportion sampling and no sampling.

Further experimentation into varying different parameters may prove useful.
Ways in which sample size is calculated, either via different types of progression
or different rates of increase could be investigated, as could the effect of chang-
ing the minimum sample size. However, the multitude of potential parameters
makes such experimentation unwieldy at best. The parameters investigated

above relate to the very nature of variable proportion sampling.

5.4 Statistically Determining Sample Size

The previous experiments showed variable proportion sampling to generally be
slightly less accurate than standard sub-sampling, while often taking less exe-
cution time. Although variable proportion sampling somewhat alleviated the
deficiencies of using a static sample size, problems still exist. It is still possible
for the sample to be too small to determine an appropriate split, or larger than
necessary, therefore wasting execution time.

This section investigates statistical measures with which sample size could
be determined dynamically. Issues with these methods are discussed, and an
algorithm that implements an appropriate method is introduced. Experiments

are performed, and the results compared to other sampling methodologies.

168



5.4.1 Desirable Qualities

One of the properties common to simple sub-sampling and variable proportion
sampling is that the way in which sample size is determined is computationally
inexpensive. With simple sub-sampling, size specified as a parameter. Variable
proportion sampling requires only a simple, low-cost calculation. However, a
method which employs a statistical determination of sample size is likely to not
have this luxury. Therefore, before investigating potential methods to statisti-
cally determine sample size, it may be useful to identify necessary and desirable

qualities of the determination method. These qualities are outlined below.

1. Use the right amount of data. The purpose of statistically determining
sample size is to attempt to use as much data as necessary to find an
appropriate split, but not more than required. Using less data than neces-
sary is likely to lead to inappropriate split selection, while using more will

waste execution time.

2. Not increase time. Wherever possible, determination of sample size should
not increase the time required to build a node to more than using all avail-
able data. In other words, the cost of selecting the sample plus inferring

the split should not exceed the cost of learning from all available data.

3. Allow control over the trade-off between accuracy and time. Whenever
sampling is used, it can be expected there will be a trade-off between
predictive accuracy of the final model and execution time. Rather than
making this trade-off static, the practitioner should be able to have input
into the trade-off they are willing to accept. For example, increasing confi-
dence in the chance of the most appropriate split being selected at a node
is likely to come at the cost of increased execution time. It is sensible that
the user of the algorithm should be able to decide how important these

factors are in relation to each other and to the task at hand.
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4. Deal with continuous attributes. Many data sets contain continuous at-
tributes. An algorithm which ignores continuous attributes limits its prac-
ticability dramatically. Alternatively, continuous attributes could be dis-
cretised. However, this compromises the potential descriptiveness of in-
ferred models. Also, if discretisation is performed prior to input to the
learning algorithm, it is possible that potentially fruitful cut-points are

forever lost. None of these situations are desirable.

5.4.2 Methods for Determining Sample Size

While much research has been performed into methods for determining appro-
priate sample size when using pre-sampling, little has been done to determine
appropriate sample size when using sub-sampling. However, it may be possi-
ble to implement a method used in contexts other than sub-sampling within
a sub-sampling framework. A discussion of methods previously used to deter-
mine appropriate sample size follows. Issues regarding implementation of these

methods within a sub-sampling framework are also discussed.

Learning Curves

A popular method used to determine sample size within a pre-sampling context
is the estimation of learning curves. A learning curve is a plot of model accuracy
against sample size. The premise behind learning curves is the assumption that
an increase in sample size will lead to an increase in the accuracy of inferred
models. A point will eventually be reached after which adding extra instances
to the sample has negligible or no effect on predictive accuracy. This point is the
beginning of the learning curve “plateau,” and can be considered the optimal
sample size as it finds the balance between minimising loss in accuracy due
to sampling and maximising execution time saved by sampling. This optimal

sample size can then be used to train the final model.
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Within a sub-sampling context, samples of increasing size could be taken at
a node, with a utility measure recorded for each attribute. Each attribute could
be measured until the utility measure had converged, and the attribute with the
best measure selected for the split. In this way, splits may be determined using
less than the available data set, resulting in a reduction in time.

However, the drawback of such a method is that it requires a utility measure
that is monotonic with increasing sample size. Measures such as the information
gain used by C4.5 are not monotonic in the number of instances [97]. Learning

curves can therefore not be used if such measures are to be employed.

Clustering and Data Squashing

Rather than determine an appropriate sample size, methods such as clustering
[36] and data squashing [34] determine an appropriate sample data set. The
premise behind these methods is that an unsampled data set can be adequately
represented using fewer, weighted instances. Clustering selects a subset of the
input data to represent the entire data set, giving each instance in that subset a
weight corresponding to the number of instances it represents. Data squashing,
on the other hand, creates pseudo-instances. These pseudo-instances are not
necessarily instances in the original data set. Their purpose is to allow for
compression of the data while reducing information loss, achieved by ensuring
that averages and moments of the original data are maintained in the squashed
data. Clustering does not ensure this.

Clustered and squashed data sets can produce accurate models [32, 34]. How-
ever, the drawback of these methods is that they are computationally expensive.
Although they may be useful in a pre-sampling context, their cost is unlikely to

enable them to be used in a sub-sampling context.
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Adaptive Sampling

Another method that is commonly used to determine sample size is to make
a statistical calculation of the sample size required for accurate estimation of
a concept. Procedures such as adaptive or sequential sampling [28, 99, 92, 60]
dynamically calculate the number of instances required to estimate a parameter
of a data set within a given margin of error with a given confidence level. In
a sub-sampling context, the parameter to be estimated could be a measure of
utility of an attribute.

The drawback of many adaptive sampling methods is that they require the
process with which the parameter is estimated be incremental. By its very
nature, computing utility via an entropy based measure is not incremental when
continuous attributes are involved, as inclusion of extra instances requires re-
sorting of attribute values. Although some adaptive sampling methods do not
require incrementalism, they may remain inappropriate, as continual re-sorting
of continuous attributes is still required.

Alternatively, continuous attributes could be discretised. As mentioned in
the desiderata outlined in Section 5.4.1, global discretisation is undesirable.
Thus, attributes must be discretised locally, before the adaptive sampling pro-
cess begins. Although this discretisation could be done with little cost, any
split that is subsequently found relates to the discretised attribute, and not the

original continuous attribute. This has not satisfied the desiderata.

Statistical Measures

Another alternative is to use a statistical measure of how similar the sample
is to the data from which it was selected. There are a number of well defined
statistical measures to do this. However, many of these are unsuitable for the
required purpose.

Firstly, the chi-square goodness-of-fit test cannot be used for two reasons.

172



The first is that rather than measuring whether a sample represents a known
distribution, as desired here, this test measures whether a hypothesised distribu-
tion fits the data. In the desired context, the distribution from which the sample
was selected will be known. The second reason is that the test will always show
the distribution is not evidenced by the sample, if given a large enough sample
[22, page 191]. Since sub-sampling is designed for large training sets, this rules
out possible use of this measure.

Contingency tables also cannot be used. Contingency tables can be used
to determine whether two data sets are likely to come from the same source.
However, one of the assumptions of contingency tables is that the data sets
compared are independent samples. Comparing a sample to the population
from which it was selected violates this critical assumption.

Another deficiency of the chi-square goodness-of-fit test and contingency ta-
bles is that they require continuous values to be discretised. Rank-based meth-
ods, such as the Wilcoxon test, overcome this problem, but introduce others.
First, rank-based methods require continuous values to be sorted. Within a
sub-sampling context, this would defeat the purpose of performing sampling, as
the process of sorting all available data so that the test can be performed, select-
ing a sample, performing the test, then inferring a split, would almost certainly
result in the whole process taking longer than using all the available data to
infer a split. Measures of the Kolmogorov type also suffer from this problem.
The second problem with rank-based methods is they also assume that sampled
values are drawn from a normal distribution. This clearly cannot be guaranteed
in any real-world data set.

Regardless of these issues, John and Langley [60] use a chi-square test to
determine if frequencies of discrete values in a sample are sufficiently similar
to those from which the sample was drawn. To determine whether sampled

continuous values are sufficiently similar, a comparison of large-sample means is
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performed. If all attributes are determined to be sufficiently similar, the sample
is then considered sufficiently similar. However, there are two problems with
this method in the current desired context. First, there is no guarantee that
any sample will be large enough to accurately determine the true mean of a
continuous attribute. Second, the way in which to allow a trade-off between
sample sufficiency and execution time is not clear. It is possible to relax the
bounds for each attribute, but the cumulative effect of this may be greater
than expected. Alternatively, it may be not be necessary for all attributes to
be considered sufficiently similar. This then introduces the problem that a split
may be selected based on an attribute for which the sample is not representative
of the available data. This could be remedied by requiring that splits can only be
based on attributes that are considered sufficiently similar, but the problem then
exists that an attribute not considered sufficiently similar may be the correct
attribute on which to split at that node.

Methods such as the Smirnov test and the Cramér-von Mises test for two
samples also can be used to determine if two data sets are drawn from the same
distribution. However, as with contingency tables, these measures require that

the samples being compared are independent.

5.4.3 Information Divergence and Sample Quality

A method suitable for the problem of determining sample size in progressive
sampling has been proposed by Gu, Liu, Hu and Huan [50]. The paper in-
troduces the Statistical Optimal Sample Size — a method for determining the
minimum sample size that should be employed when estimating learning curves
using a geometric sampling progression [84]. The method gathers information
about the full training set (i.e. distribution of attribute values) and compares
this to a random sample, producing a measure of the “quality” of the sample.

If the quality of the sample is less than a supplied threshold, a larger sample is
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taken and the process repeated. If the sample quality is above the threshold,
the sample is considered to be sufficiently similar to the full training set. This is
then considered the minimum sample size that should be investigated, as mod-
els built from samples smaller than this size are unlikely to produce accurate
models.

The quality of the sample as compared to the whole data set is defined as

Q(S)=e"’ (5.1)
where
J = % > Jk(S,D) (5.2)

S and D represent the sample and full data set respectively and r is the number
of attributes [50]. Ji(S, D) is taken as the measure of information divergence
[68] between the sample and population for attribute k, defined as

c

Je(1,2) = (pije — p2ji) In(p1ju/p2jn) (5.3)

j=1
where ¢ is the number of discrete values for attribute k, and p;;, is the probability
of the j-th value of attribute k& occurring in population i. This probability can
be estimated by taking a count of each value in the data set.

Although the above method is designed to eliminate the need to build unnec-
essary small models when estimating a learning curve, a similar process could be
applied in a sub-sampling context. Samples of increasing size can be taken until
a sample sufficiently similar to the available data is found. This would provide
a minimum size with which to sample at a node. Although this only provides a
minimum size with which to sample, this may be sufficient in sub-sampling.

This measure can be viewed as rejecting samples that are not similar enough
to the available data. Note that since a sample must be drawn to determine
whether it is sufficiently similar, determining the sample size also provides the

sample. This precludes the possibility of using the sample quality measure to

175



pre-determine sample size, as sample quality can only be evaluated with respect
to a specific sample. However, since the measure is to be applied within a
sub-sampling context, this is acceptable.

The method also provides a means for practitioners to manage the trade-
off between accuracy and time via the threshold of sufficient quality. A lower
threshold can be expected to produce less accurate models in less time, as smaller
samples are then more likely to satisfy sufficiency.

Sub-sampling using the sample quality measure to determine sample size at

each node shall henceforth be referred to as SQ sampling.

5.4.4 Modifying Sample Quality for Continuous
Attributes

A drawback of the sample quality measure as presented by Gu et al. [50] is
that it is designed for only discrete attributes. Continuous attributes must be
discretised. As mentioned previously, it is undesirable to do this on a global scale
(i.e. before data is input to the learning algorithm) as discretisation reduces
information contained within data. Discretisation would also make the method
unusable with algorithms that use only continuous attributes, such as OC1.

Therefore, to meet the desiderata of Section 5.4.1, the sample quality measure
must be able to use continuous attributes without requiring global discretisation.
This can be achieved in SQ sampling by discretising continuous attributes locally
at each node, and only for the purpose of determining if the sample is sufficiently
similar. Once this has occurred, the discretisation can be discarded and the
original continuous values used.

A necessary consideration of SQ sampling is the time required by sampling
overhead. To see how this can be managed, consider SQ sampling implemented
within C4.5. The information divergence measure requires collecting information

about the available data to determine if a sample is sufficiently similar. Since
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this information is independent of the sample, this should be performed before
a sample is drawn, so that it can be re-used, if required, for further samples.
Determining the utility of a split should also be postponed until a sample is
selected.

When determining the utility of a split for a discrete attribute, C4.5 iterates
through all instances, taking a count of the values of the attributes and class.
This requires one pass over the available data. Since the information divergence
measure requires knowledge of the available data, it must perform a similar pro-
cess, even before a sample is considered. Once a sample is selected, it must then
undergo the C4.5 process of determining split worth. Therefore, SQ sampling
cannot reduce execution time required for determining the value of a split of a
discrete attribute. However, not including discrete attributes when measuring
sample quality would defeat the purpose of taking the measurement. It can
be expected that using SQ sampling on a data set that contains only discrete
attributes would take longer than using default C4.5.

Since it is not possible for SQ sampling to be quicker with discrete attributes,
any reduction in execution time must occur with continuous attributes. When
determining the worth of a split for a continuous attribute, C4.5 sorts the at-
tribute values. This requires multiple passes over the node data. Sorting is
an expensive operation, and reducing the number of values to be sampled can
save substantial execution time. This provides an excellent opportunity for SQ
sampling to reduce execution time.

As previously mentioned, the information divergence measure requires con-
tinuous values to be discretised. There are many ways this can be performed
[38, 105, 39]. All discretisation methods work by placing continuous values into
“bins” and assigning a discrete value to each bin. Different methods use differ-
ent ways of determining the number and size of bins. However, methods that

determine bins based on measures of entropy or error require sorting of the data
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(e.g. [38]), negating gain in execution time from using a smaller set to determine
split worth. Methods that use equal frequency intervals (e.g. [105]) also require
sorting.

One of the simplest methods of determining bins is to use intervals of equal
width. Here, a pre-selected number of bins is used with the width of each bin
calculated by

max value — min value

width =

number of bins

Such a method does not require sorting of attribute values.

Fixed-width binning is not the best way to perform discretisation. Research
has shown the Fayyad and Irani entropy method [38] tends to result in classifiers
with higher accuracy than other discretisation methods [33, 65]. However, the
difference between this method and fixed-width binning is not great. The accu-
racy of models inferred after discretisation using the Fayyad and Irani method
and two types of fixed-width binning has been compared [33], and although the
Fayyad and Irani method produces models with greater accuracy than fixed-
width binning, the difference is seldom statistically significant. When using
C4.5 as the induction algorithm, it has been shown that Fayyad and Irani’s
discretisation produces more accurate models than fixed-width binning using
2log! bins ten times, and less accurate models five times [33]. The result of a
one-tailed sign test is p = 0.1509. Using ten bins, the ratio is 12:4 (p = 0.0384).
When using Naive-Bayes as the induction algorithm and 2 log! bins, the ratio is
6:9 (p = 0.8491) and with ten bins 9:7 (p = 0.4018).

Although the purposes of discretisation in the above research and this re-
search are different, the above research provides an indication that fixed width
binning may be suitable for SQ sampling. This is because fixed-width bin-
ning has small computational requirements, while maintaining reasonable per-
formance. Since discretisation will be used in this research to determine simi-

larity of distributions rather than to reduce error, fixed-width binning should be
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adequate.

5.4.5 SQ Sampling

Thus far, it has been argued that the most appropriate way of selecting a suffi-
cient sample is with Kullback’s information divergence measure. A method that
extends this measure to allow use of continuous attributes without loss of infor-
mation in the final models has also been proposed. The method of discretisation
has been discussed, with the conclusion drawn that fixed-width bins are likely
to provide the best balance between informative bins and execution time.

However, there are still issues that must be resolved. First, the way in which
sample size will be increased when a sufficient sample has not been found must
be decided . Although it is possible to determine sufficiency by increasing sample
size one instance at a time, and this will guarantee the minimum sample size
which can be determined sufficient will be found, doing such is likely inefficient.
Therefore, some sort of progression of sample sizes must be used. Following the
work of Gu et al. [50] and Provost, Jensen and Oates [84], it is proposed that a
geometric progression is used. The results of Section 5.3, although in a slightly
different context, also support the use of a geometric progression.

The second issue regards enforcing a minimum sample size. Similar to vari-
able proportion sampling, it is unreasonable to expend the resources required
for determining sufficiency if the available data at a node consists of only a
small number of instances. In these circumstances, the overhead of performing
the sampling and determining sufficiency is likely to be greater than the cost of
using all available data. Therefore, a minimum sample size should be employed,

below which sampling is not performed.
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5.4.6 Experiments

Experiments were performed to compare the performance of SQ sampling to
standard sub-sampling and no sampling in terms of accuracy, model complexity,
and execution time. The methodology and data sets used are the same as
described in Section 4.4. Sampling is performed randomly, without replacement.
This was performed as the purpose of the quality measure is to evaluate how
close the attribute value distribution of a sample is to that of the population.
Replacement, and stratified and disproportionate sampling alter this distribution
in the sample.

Three parameters are required for SQ sampling. The minimum sample size
and the starting sample size were both set to 1,000 instances for all experiments.
Six sample quality settings were used, ranging from 0.95 to 0.9999. Local dis-

cretisation was performed using four fixed-width bins.

5.4.7 Results

Following from Section 5.3.2, tables compare results for SQ sampling to no
sampling and the most accurate standard sub-sampling. Again, since there is
no direct mapping between standard sub-sampling and SQ sampling, only the

most accurate result achieved with standard sub-sampling is used.

Accuracy

Table 5.15 shows the accuracy of SQ sampling for the sample quality settings
used. Results are compared to no sampling, and the greatest accuracy obtained
using standard sub-sampling.

The results show that SQ sampling is consistently less accurate than no
sampling. The only occasion on which SQ sampling is more accurate than the
most accurate standard sub-sampling is with a sample quality of 0.9999 on the

Adult data set.
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Table 5.15: Accuracy of SQ sampling

Data Set No | Standard || 0.95 0.99 | 0.995
Adult 0.8602 | 0.8589 | 0.8468 | 0.8469 | 0.8469
Census Income 0.9526 | 0.9526 0.9463 | 0.9463 | 0.9462
Connect-4 0.7981 | 0.7999 | 0.7789 | 0.7789 | 0.7788
Cover Type 0.9375 | 0.9406 | 0.9121 | 0.9121 | 0.9121
Distinct Boundary || 0.9990 | 0.9991 | 0.9983 | 0.9984 | 0.9984
Fuzzy Boundary 0.9985 | 0.9985 0.9979 | 0.9979 | 0.9982
IPUMS 0.9282 | 0.9284 | 0.9278 | 0.9278 | 0.9283
Random Binary 1.0000 | 1.0000 | 0.5019 | 0.5019 | 0.5019
Shuttle 0.9996 | 0.9997 | 0.9992 | 0.9992 | 0.9992
Sleep 0.7299 | 0.7310 | 0.7304 | 0.7307 | 0.7298
Waveform 0.9857 | 0.9857 | 0.9848 | 0.9849 | 0.9851
Data Set No | Standard | 0.999 | 0.9995 | 0.9999
Adult 0.8602 | 0.8589 | 0.8495 | 0.8521 | 0.8610
Census Income 0.9526 | 0.9526 | 0.9473 | 0.9484 | 0.9505
Connect-4 0.7981 | 0.7999 | 0.7786 | 0.7836 | 0.7984
Cover Type 0.9375 | 0.9406 | 0.9121 | 0.8977 | 0.9257
Distinct Boundary || 0.9990 | 0.9991 | 0.9988 | 0.9989 | 0.9990
Fuzzy Boundary 0.9985 | 0.9985 | 0.9984 | 0.9985 | 0.9985
IPUMS 0.9282 | 0.9284 | 0.9283 | 0.9275 | 0.9281
Random Binary 1.0000 | 1.0000 | 0.7343 | 0.9834 | 1.0000
Shuttle 0.9996 | 0.9997 | 0.9995 | 0.9995 | 0.9994
Sleep 0.7299 | 0.7310 | 0.7305 | 0.7303 | 0.7296
Waveform 0.9857 | 0.9857 | 0.9855 | 0.9856 | 0.9857
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Table 5.16: Number of times S() sampling is within bounded accuracy losses

Bounded Required Sample Quality

Loss 0.95 | 0.99 | 0.995 | 0.999 | 0.9995 | 0.9999
1% 74 | 74 7:4 7:4 8:3 10:1
2% 83 | 83 | 83 8:3 10:1 11:0
5% 10:1 | 10:1 | 10:1 | 10:1 11:0 11:0

Table 5.16 presents win:loss records for sample quality settings with one,
two, and five per cent bounded accuracy loss. The table shows the two highest
quality settings often achieve accuracy within one per cent bounded loss. The
sole exception for the highest quality setting is the Cover Type data set. It
is interesting that the records for the lowest four qualities are identical. This
suggests that varying the quality setting between 0.95 and 0.999 makes little
systematic difference to accuracy.

The results for the Random Binary data set are interesting. On this data
set, all sample quality settings of 0.995 and less produced models that perform
only marginally better than chance. An investigation into SQ sampling with this
data set showed that a sample with sufficiently high quality was always found at
the root node with the minimum sample size, i.e. 1,000 instances. This explains
the poor performance, as both pre-sampling and standard sub-sampling showed
similar behaviour with this sample size and data set in Chapter 4. Changing
the minimum sample size to 2,000 instances was investigated, and resulted in

accuracy of 1.000 for all sample quality settings.

Model Complexity

Table 5.17 shows the mean number of nodes inferred by SQ sampling for the
sample qualities used. Results are compared to no sampling, and the greatest

accuracy obtained from standard sub-sampling.

182



Table 5.17: Nodes Inferred by SQ sampling

Data Set No Standard 0.95 0.99 0.995
Adult 600.4 486.8 229.6 217.5 211.3
Census Income 1634.5 1536.8 259.7 261.0 297.0
Connect-4 4708.2 3302.8 2942.3 | 2942.3 | 2997.9
Cover Type 23730.4 | 22141.2 || 20420.5 | 20420.5 | 20420.5
Distinct Boundary || 1430.7 1444.9 1302.7 | 1291.1 | 1310.0
Fuzzy Boundary 454.9 454.7 326.1 328.3 367.5
IPUMS 1414.4 1418.9 1424.6 | 1424.6 | 1378.7
Random Binary 78838.3 | 78801.3 1.0 1.0 1.0
Shuttle 46.7 37.3 52.1 50.5 51.5
Sleep 9212.3 9131.7 9191.9 | 9146.8 | 9190.0
Waveform 4107.5 4015.9 4437.5 | 4516.4 | 4347.8
Data Set No Standard || 0.999 | 0.9995 | 0.9999
Adult 600.4 486.8 516.7 411.9 453.6
Census Income 1634.5 1536.8 549.6 352.0 610.7
Connect-4 4708.2 3302.8 2950.0 | 2806.1 | 3273.0
Cover Type 23730.4 | 22141.2 | 19309.9 | 19745.9 | 20979.3
Distinct Boundary || 1430.7 1444.9 1376.9 | 1400.1 | 1427.9
Fuzzy Boundary 454.9 454.7 411.9 417.7 432.8
IPUMS 1414.4 1418.9 1417.7 | 1483.3 | 1435.7
Random Binary 78838.3 | 78801.3 | 36749.5 | 76202.9 | 78846.9
Shuttle 46.7 37.3 48.1 46.8 46.7
Sleep 9212.3 9131.7 9097.9 | 9200.3 | 9194.7
Waveform 4107.5 4015.9 4350.7 | 4134.1 | 4045.4
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The results show that S sampling generally infers less complex models
than both no sampling and the most accurate standard sub-sampling. A sample
quality of 0.9999 compared to the most accurate sub-sampling is the only case
where this is not true, with SQ sampling inferring smaller models five times and
larger six times.

Increasing sample quality shows no clear trend of an impact on model com-
plexity. Comparing adjacent sample quality settings over all data sets shows
that increasing quality results in an increase in model complexity 29 times, and
a decrease 20 times, with six occasions where there was no difference in com-

plexity.

Execution Time

Table 5.18 shows the time taken for SQ sampling for the sample qualities used.
Results are compared to no sampling, and the greatest accuracy obtained from
standard sub-sampling.

The results show that SQ sampling generally takes less execution time than
no sampling. Only the highest sample quality setting is slower than no sampling
more times than it is faster. SQ sampling is also generally quicker than the most
accurate standard sub-sampling. However, the two highest quality settings are
slower than standard sub-sampling more often than they are faster.

The results for a sample quality setting of 0.9999 on the Distinct Boundary,
Fuzzy Boundary, and Waveform data sets show significant decreases in execution
time compared to no sampling. It is interesting that this quality setting produced
models with accuracy equal to that of no sampling on these data sets.

Again, the execution time required for the Connect-4 data set is much greater
than that of no sampling. However, the results show that the sample quality

setting has little impact on execution time.
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Table 5.18: Execution time of SQ sampling

Data Set No Standard 0.95 0.99 0.995
Adult 13.26 14.50 13.00 12.89 13.15
Census Income 86.61 98.13 121.47 | 103.64 | 130.09
Connect-4 6.74 6.42 38.73 38.16 39.38
Cover Type 1818.31 | 1899.43 || 1366.46 | 1467.94 | 1377.29
Distinct Boundary || 289.65 232.02 215.70 | 178.04 | 227.71
Fuzzy Boundary 359.93 127.07 85.87 72.36 117.73
IPUMS 86.19 85.53 70.27 81.26 78.34
Random Binary 181.70 140.20 13.53 11.77 99.95
Shuttle 5.15 1.38 1.57 1.57 3.10
Sleep 240.80 237.59 233.39 | 195.57 | 236.59
Waveform 1688.54 | 1024.99 | 940.10 | 1139.75 | 1090.16
Data Set No Standard || 0.999 | 0.9995 | 0.9999
Adult 13.26 14.50 13.51 13.70 14.59
Census Income 86.61 98.13 130.09 | 129.77 | 115.78
Connect-4 6.74 6.42 47.80 46.30 10.31
Cover Type 1818.31 | 1899.43 || 1377.29 | 1504.61 | 1606.11
Distinct Boundary || 289.65 232.02 227.71 | 232.42 | 210.53
Fuzzy Boundary 359.93 127.07 117.73 | 126.42 | 134.28
IPUMS 86.19 85.53 78.34 82.22 89.26
Random Binary 181.70 140.20 99.95 | 199.19 | 199.03
Shuttle 5.15 1.38 3.10 4.03 5.23
Sleep 240.80 237.59 236.59 | 237.85 | 211.92
Waveform 1688.54 | 1024.99 | 1090.16 | 978.15 | 1088.14
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5.4.8 Summary

SQ sampling results in models being built with less predictive accuracy than
no sampling or the most accurate standard sub-sampling. This generally comes
with a decrease in execution time, with higher sample quality settings generally
taking less execution time than lower sample qualities.

An analysis of sample sizes used shows that a sample of 1,000 instances is
generally considered sufficiently close to the available data, regardless of the
characteristics of the data set. This may suggest that higher levels of quality
setting are necessary.

It is difficult to suggest that SQ sampling is effectively solving the problem
of large data. Although accuracy close to that obtainable from the full training
set, can be achieved, the time savings in doing so are often marginal. However,
there are significant savings with three of the four largest data sets. This may
suggest that SQ sampling could provide larger savings in execution time with

larger data sets.

5.5 Conclusions

Experiments were performed to investigate potential methods of improving sub-
sampling. Comparisons were made to the existing methodologies of standard
sub-sampling, and using the full training set.

An investigation into the effects of sampling without disproportionate sam-
pling and with replacement was performed. This showed non-disproportionate
sampling to result in greater loss of accuracy than sampling with replacement.
Non-disproportionate sampling also results in a reduction in execution time less
frequently than sampling with replacement. Although there are some occasions
where substantial amounts of time are saved, the time savings are generally

marginal.
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Two new methodologies for determining sub-sample size were also intro-
duced. Variable proportion sampling produces models with accuracy close to
that obtainable with no sampling. Although accuracy is rarely greater than no
sampling, it is often within one per cent of that of no sampling, and always
within two per cent. This cost in accuracy brings with it a saving in execution
time. Using a linear rather than geometric progression for determining sample
size generally results in a reduction of both accuracy and execution time. This
difference in execution time is generally small.

SQ sampling was introduced to attempt to statistically determine appropri-
ate sample size on a node-by-node basis. Models produced using SQ sampling
generally suffer from a loss in accuracy. However, model accuracy generally
stays within one per cent bounded accuracy loss, especially with higher sample
quality settings. Substantial reductions in execution time can also be gained,
without loss of accuracy, when used on large data sets.

Finally, the method of obtaining the statistically optimal sample size has
been extended from the ability to use only discrete attributes to also include
continuous attributes. This removes the need for global discretisation, and thus

losing information, from continuous attributes.
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Chapter 6

The Problem with Learning

Curves

A learning curve is a plot of accuracy against training set size for a given learning
algorithm and data distribution. It is widely accepted that learning curves
usually conform to a standard shape, and that accuracy usually increases as
training set size increases. The general shape of a learning curve introduces an
interesting expectation: after a certain data and algorithm dependent training
set, size is reached, accuracy either does not increase, or increases only negligibly,
with the addition of further instances to the training set. The size at which this
accuracy “plateau” begins can be viewed as the optimal training set size for
efficient learning as it minimises expected accuracy loss while also minimising
the size of the training set required to achieve that accuracy.

Learning curves therefore provide what is often considered a viable method
for a practitioner to reduce execution time while maintaining accuracy equal
or acceptably close to that obtainable when learning from the full training set.
If the optimal size can be found or closely estimated, then there is little to be
gained by expending the resources required to learn from larger training sets.

Much research has been performed into methods that use learning curves
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to improve efficiency by either directly or indirectly calculating this optimal
size [53, 71]. However, a significant problem lies in the fact that developing an
accurate learning curve method by creating models for every training set size is
impractical. Therefore, for a learning curve method to reduce execution time, the
curve must be estimated. As with any estimation, an estimated learning curve
can be expected to contain some error. Research has therefore been performed
to investigate methods that attempt to mitigate the cost, both in terms of loss
of accuracy and expense of computational resources, of estimation of learning
curves and determination of the optimal sample size.

The contention of the current research is that a number of these methods
involve higher risk than is currently understood. This risk can manifest itself as
increased execution time over the full training set or substantial loss of accuracy
compared to that obtainable with the full training set. This chapter investi-
gates the conditions under which learning curves may not be a viable method

of reducing execution time while maintaining acceptable accuracy.

6.1 The Case Against Learning Curves

To be usable for the purpose of reducing execution time, a learning curve must
be estimated. This requires induction of a number of models using training sets
of varying size. The progression of sample sizes used is considered a sampling
schedule. Regardless of the method used to estimate the learning curve and
the sampling schedule used, the purpose is to find the minimum training set
size after which including more instances will not be beneficial. This section
discusses methods used to find this size, and outlines potential problems with

each method.
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6.1.1 Curve Extrapolation

Possibly the least computationally expensive method of estimating a learning
curve is to find the accuracy of a small number of models built with small sample
sizes, and extrapolate a curve. Extrapolation is performed by fitting parameters
of a function that has the general form of a learning curve so that error between
the function and measured accuracies is minimised. The optimal training set
size can then be found by inspecting the curve to find the smallest training set
size that is acceptably close to the projected accuracy obtainable from the full
training set.

There are a number of types of functions which fit the general form of a
learning curve. Both logarithmic and exponential functions can fit learning
curves well, although it has been shown that a power function of the form £ =
xS7Y, where F is the error rate, S is the sample size, and x and y are parameters
fit to observed accuracies, provides a more accurate model [42]. However, a
three-parameter power law of the form E = z — xS7Y provides an even better
fit [49].

However, the problem with methods of this type is that learning curves
generally consist of three phases [84]. The first phase is a steep rise in accuracy
with little increase in sample size. The second is a much less steep rise in
accuracy with reasonable increase in sample size. The third is a long plateau,
where accuracy does not increase substantially with additional training data.
Although these phases are not disjoint, they are distinct, and hence it will be
difficult to fit a single function to accurately estimate all three phases. This
will be exacerbated if the observed accuracies used to fit the data are drawn
from the first two phases only, and even more so if drawn from only the first
phase. However, since the purpose of estimating the curve is to reduce resource
costs and to find the optimal sample size, including observed accuracies from the

plateau phase defeats the purpose of using this method of estimating learning
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curves.

It may be argued that extrapolation methods could be iteratively used with
increasing samples sizes to provide better estimations of the curve, until a model
is built with accuracy close to that of the full training set. However, the prob-
lems with this approach are two-fold. As will be seen in Section 6.2, such a
method does not guarantee efficiency. A larger problem, though, is that such a
method relies on the projected accuracy of the full training set being reliable. In
their experiment analysis, Gu, Hu and Liu [49] show the difference between the
extrapolated three-parameter power law estimation of the learning curve and the
measured accuracy of the full training set can be more than five per cent. Com-
pounding this problem is the unpredictability of whether the extrapolated curve
under-estimates or over-estimates actual obtainable accuracies. These factors

raise doubts as to the utility of curve extrapolation methods.

6.1.2 Curve Interpolation

A more accurate method of estimating a curve than extrapolation is interpo-
lation. Rather than the estimated points lying outside observed accuracies as
with extrapolation, interpolation requires that estimated points are bounded on
each side by observed accuracies. However, this suffers a similar fate to extrapo-
lation of a curve in that effectiveness of the method requires observed accuracies
contained within the plateau phase of the curve. Again, due to the resources
required to achieve this, it is likely that interpolating a curve will defeat the

purpose of using a learning curve.

6.1.3 Gradient of Tangent

A third method of finding the optimal sample size does not attempt to estimate
the curve itself. Rather, it attempts to calculate when the plateau has been

reached by analysing the gradient of the tangent to the curve. When the gradient
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is sufficiently close to zero, the curve is considered to have “converged” and the
plateau reached.

Such estimation can be performed by analysing the gradient on either a
global or local scale. When analysing global gradients, widely disparate sample
sizes are compared, with the gradient determined between neighbouring samples.
This has the advantage that relatively few samples must be taken, and small
variations in accuracy due to the specific sample used for the training set are
unlikely to have significant impact on the gradient. However, the disadvantage
is that it if the learning curve does not plateau until large training set sizes are
reached, it is possible that convergence will not be detected and the full training
set must be used. Global scale gradient analysis is used in the work of John and
Langley [60].

When analysing local gradients, a number of points are sampled around a
selected sample size and the accuracies of models inferred from these additional
samples used to find a line-of-best-fit. Again, if the gradient of this line is suf-
ficiently close to zero, the curve is considered to have converged. However, the
drawback of this method is that it relies on the learning curve being strictly
monotonic until the plateau is reached. If the curve is not strictly monotonic,
the method may incorrectly detect global convergence when it has found a local
accuracy plateau. For example, the results presented in Sections 4.5.1 and 5.2.3
regarding the Random Binary data set showed that a sample size of 1,000 in-
stances consistently produces accuracy rates of 0.5019. It is likely that inferring
models from slightly different sample sizes will have little, if any, impact on ac-
curacy, as the results suggest that a critical mass of instances must be reached
before accuracy improves. Therefore, a method that analyses local gradients
will likely accept that the curve has converged, even though larger sample sizes
produce models with much greater accuracy.

A second problem with analysing local gradients is that the precision of es-
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timates of local gradients can be expected to suffer from variations in accuracy
due to the specific set of instances selected for a sample. These variations could
potentially result in the curve appearing flatter or steeper than it actually is,
leading to possible false detection of convergence or false non-detection of conver-
gence respectively. To alleviate this problem, averaged results of many samples
of the same size must be used, substantially increasing required computational
resources and execution time.

The following sections further investigate the risks of using learning curves
when using gradient of tangent methods. Since problems with global gradient
analysis have been thoroughly discussed in other work [84], these sections focus
on local gradient analysis methods. Specifically, the sections investigate the
Linear Regression with Local Sampling (LRLS) method [84]. An analysis of
computational requirements is performed, as are experiments investigating the

reliability of convergence detection using analysis of local gradients of the curve.

6.2 Conditions Required for Efficiency of
Learning Curves

To be computationally efficient, a learning curve method must take less execution
time than learning from the full training set. It could even be argued that a
learning curve method should take substantially less time than learning from
the full training set, in order for the risk of a potential accuracy sacrifice to
be worthwhile. Given this risk, a learning curve method should also be more
computationally efficient than simply selecting and learning from a large sample
of the data, with the knowledge that there is a reasonable chance that such a
large sample will provide acceptable accuracy.

Extrapolation and interpolation methods work by estimating the learning

curve, then selecting the appropriate training set size with which to build a
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Table 6.1: Computational complexity required for varying training set sizes

Size Step | Cumulative
1,000 12,882 12,882
2,000 33,297 46,179
4,000 86,064 132,243
8,000 222,450 354,693

16,000 574,969 929,662
32,000 1,486,125 2,415,787
64,000 3,841,196 6,256,983
128,000 9,928,363 | 16,185,346
256,000 | 25,661,897 | 41,847,243
512,000 | 66,328,450 | 108,175,693
1,024,000 || 171,439,519 | 279,615,212

model. Gradient of tangent methods work in the opposite way: a model is built,
then the curve estimated to determine if the plateau has been reached. This
methodology eliminates the possibility of selecting a sample size that is likely
to produce a model within an acceptable bound of the full training set, as the
accuracy of the full training set is not estimated.

It is therefore important to understand the potential computational cost
of using gradient of tangent methods if convergence is not detected. Table 6.1
compares the computational cost of learning from the full training set to the cost
of learning using the geometrically progressing sampling schedule of Chapter 4.
Complexity is calculated with the measurement given by Provost, Jensen and
Oates [84], where C4.5 is shown to be O(n'3") for the Waveform data set. The
column labelled “Step” presents the cost of inducing a single model with the
corresponding training set size, and the “Cumulative” column sums costs up to

that size.
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The table shows an interesting phenomenon. Assume that the full training
set, consists of 1,024,000 instances. Then for a geometric sampling progression
to be less expensive than learning from the full training set, the maximum sam-
ple size used with this sampling schedule must be 512,000 instances as this is
the largest cumulative size less than the cost of learning from the full training
set. However, this is true only for methods that detect convergence with global
analysis of the gradient. Methods that employ local analysis must build many
models of similar size. LRLS selects 10 additional samples around the sched-
uled sample size. Therefore, the cost at each step, and hence the cumulative
cost, must be multiplied by 11 (the scheduled size plus 10 additional samples)
to obtain the true cost for LRLS. Thus, to be more efficient than learning from
the full training set, LRLS must detect convergence at a maximum of 64,000
instances. Even if the number of additional samples is reduced to four, the great-
est sample size that can be used while maintaining efficiency increases to only
128,000 instances. Using only one additional sample still requires convergence
to be detected with a sample of at most 256,000 instances, however, a limit of
only one additional sample would also preclude the use of linear regression to
find the local gradient.

Thus, to be more efficient than learning from the full training set, the LRLS
algorithm must detect convergence with at most one-sixteenth of the full training
set. Previous research [71], as well as the results reported in Chapter 4, show
this is unlikely. Given that for five of the eleven data sets used in Chapter 4
pre-sampling could not reach accuracy within one per cent of that obtainable
with the full training set, the utility of such a method of detecting convergence
is questionable. It must also be remembered that Table 6.1 does not include
the cost of measuring accuracy or detecting convergence, but only of inferring
models. Including such costs will further reduce efficiency.

A general formula for calculating the maximum number of samples that can
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be selected using a geometric progression while ensuring greater efficiency than
using the full training set can be derived as follows.

Let n = ng, ny,...,ny be any sampling schedule such that ny < ngu;, where
n gy is the number of instances in the full training set. ny is then the maximum
sample size of the schedule that is less than the full training set. Assuming
computational complexity can be represented as an exponential function, an

efficient schedule requires
N

ZA(”ZE) < N (6.1)

1=0

where x is the computational complexity of learning from a data set, and A is
the number of models built at each scheduled sample size. For global analysis
algorithms, A will be 1 as no additional points are sampled. For local analysis
algorithms such as LRLS, A will be at least 3, so that linear regression calculating
the gradient of the tangent can be performed. Note that although the size of
the additional sample points is not precisely the same as the scheduled point,
the difference in computational complexity is negligible.

For a geometric sampling schedule, n; can be defined as
n; = Br (6.2)
where B is the initial sample size and r is the rate of increase of the sampling
schedule. Then,
N
Y ABr)” < njy, (6.3)
i=0
The left hand side of the inequality can be substituted with the partial sum of

a geometric series, giving

B* [Tac(N-i—l) _ 1]

P < Ny AT (6.4)
Solving for N results in the inequality
1 r*—1
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This provides an upper bound on the number of geometrically progressing
sample sizes that can be used while ensuring greater efficiency than learning
from the full training set. The maximum sample size can be calculated by
substituting ¢ = N into Equation 6.2.

It must be noted that Inequality 6.5 applies only to geometrically progress-
ing sampling schedules. Geometric progressions have been shown to be more
efficient than both linear progressions and dynamically programmed schedules
[84], however, better estimates of the likelihood of detecting convergence may
reduce or reverse the difference with dynamic programming.

Figures 6.1 — 6.4 plot the maximum number of samples allowable while re-
maining more efficient than learning from the full training set for varying compu-
tational complexity, with differing numbers of samples taken at each scheduled
point. Each graph represents a different rate of increase of the schedule. Re-
ferring to Inequality 6.5, N is represented on the vertical axis, and = on the
horizontal. Rate of increase r differs with each graph, and the six curves on
each graph relate to differing values of A. B and ny,; are set to the constants
1,000 and 1,024,000 respectively. The graphs are limited to computational com-
plexity exponents between 1.0 and 3.0. Algorithms with smaller exponents than
1.0 are likely to result in poor predictive classifiers, as extremely little attention
can be paid to the data. Algorithms with larger exponents then 3.0 are likely
to be prohibitively expensive and therefore rarely used.

The figures show that as computational complexity decreases, the maximum
number of samples that can be used while being more efficient than learning from
the full training set also decreases. Thus, rather than allowing more samples
to be taken as might be expected, using more efficient algorithms to estimate
learning curves actually demands that fewer samples are scheduled. This result
also impacts on methods based on curve extrapolation by requiring that either

fewer samples are used, therefore reducing the reliability of the estimated curve,
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or increasing the risk of having greater computational cost than learning from
the full training set. This result should not be taken as suggesting increasing
learning algorithm efficiency will result in making learning curve estimation less
efficient, but that if an efficient algorithm is to be used, it may be more sensible
to use the full training set, rather than taking the risk of increasing execution
time by using learning curves and not detecting convergence early enough.

The range on the horizontal axis precludes the graphs showing the existence
of an asymptote of the number of samples with increasing computational com-
plexity. These limits are 17.095, 10.000, 7.565, and 6.309 samples for r = 1.5,
2.0, 2.5, and 3.0 respectively. These limits show that as the rate of increase
of the geometric progression increases, fewer samples can be used. This is not
unexpected, as increasing the rate of increase necessarily means that fewer sam-
ples will be scheduled if the size of the full training set and the initial sample
size remain fixed. However, the difference between these limits is somewhat sur-
prising. Being able to use a maximum of 17 scheduled points for » = 1.5 may
allow sufficient observed accuracies to accurately estimate the learning curve.
Increasing the rate of increase to r = 2.0 almost halves the number of samples
that may be scheduled. This could have a dramatic effect on the accuracy of

curve estimation.

6.3 Effectiveness of Convergence Detection of

Local Gradient of Tangent Methods

Although computational complexity and execution time are problems of impor-
tance when learning curves are employed, it is possibly even more important
that an acceptably accurate model is built. Methods of detecting convergence
that analyse local gradients introduce the risk that local accuracy plateaus may

be found if the curve is not strictly monotonic. This may result in convergence
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being detected with an accuracy much smaller than the global maximum.

Evidence of the non-monotonicity of learning curves already exists. Previ-
ous research has shown learning curves that are not monotonic [78], occasions
where accuracy decreases with increasing sample size [26], and learning curves
that clearly contain local maxima [80, 29]. Figure 4.7 also showed accuracy to
decrease on the IPUMS data set when moving from a sample of 8,000 to 16,000
instances.

Although these examples show only local accuracy maxima and not local
accuracy plateaus, they may have the same effect. At a maximum, the tangent
to the curve is zero. Local maxima, as well as local plateaus, may therefore

result in detection of convergence.

6.3.1 Experiments

Rather than knowing it is possible for local plateaus to occur, it is more im-
portant to know whether they affect convergence detection when using local
gradient analysis. Experiments were performed to investigate whether analysis
of the gradient of the tangent can be expected to detect convergence only when

further accuracy increase is negligible.

Methodology

Experiments employed the same geometric sampling schedule as used in previous
chapters. Instances for a sample were randomly selected without regard to class
distribution, and without replacement. Additional points were then sampled
around the scheduled point. As the way in which LRLS selects these points is
not clear, it is assumed that the same number of points are selected on each
side of the scheduled sample size, with a difference of one instance between
each sample size. Following LRLS, linear regression was performed on these

points, with convergence considered detected if the 95% confidence interval of the
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Table 6.2: Minimum sample size at which convergence was detected

No. of Additional Samples

Data Set 2 4 6 8 10

Adult 1,000 | 1,000 | 2,000 | 2,000 | 2,000
Census Income 1,000 | 1,000 | 1,000 | 1,000 | 1,000
Connect-4 1,000 | 2,000 | 1,000 | 2,000 | 2,000
Cover Type 1,000 | 1,000 | 1,000 | 1,000 | 2,000

Distinct Boundary | 1,000 | 1,000 | 1,000 | 1,000 | 1,000
Fuzzy Boundary | 1,000 | 1,000 | 1,000 | 1,000 | 1,000

IPUMS 1,000 | 1,000 | 1,000 | 1,000 | 1,000
Random Binary 1,000 | 2,000 | 2,000 | 2,000 | 4,000
Shuttle 1,000 | 1,000 | 4,000 | 2,000 | 1,000
Sleep 1,000 | 1,000 | 1,000 | 1,000 | 1,000
Waveform 1,000 | 1,000 | 1,000 | 4,000 | 4,000

gradient of the regressed line contained zero. To mitigate the effect of variance of
measured accuracy due to the specific samples used, accuracy was averaged over
ten runs of three-fold cross-validation. The eleven data sets used in previous

chapters were employed for these experiments.

6.3.2 Results

Table 6.2 shows the minimum sample size at which convergence was detected
on each data set for differing numbers of additional samples.

The table shows that with only two additional samples, convergence is de-
tected at a sample of 1,000 instances for each data set. Increasing the number
of additional samples delays convergence detection for some data sets. However,

even with ten additional samples, convergence is still detected with a sample
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Table 6.3: Accuracy of the scheduled sample size when convergence was detected

Full No. of Additional Samples

Data Set Train Set 2 4 6 8 10

Adult 0.8602 | 0.8365 | 0.8365 | 0.8425 | 0.8425 | 0.8425
Census Income 0.9526 | 0.9386 | 0.9386 | 0.9386 | 0.9386 | 0.9386
Connect-4 0.7981 | 0.6761 | 0.6945 | 0.6761 | 0.6945 | 0.6945
Cover Type 0.9375 | 0.6623 | 0.6623 | 0.6623 | 0.6623 | 0.6870
Distinct Boundary || 0.9990 | 0.9688 | 0.9688 | 0.9688 | 0.9688 | 0.9688
Fuzzy Boundary 0.9985 | 0.9942 | 0.9942 | 0.9942 | 0.9942 | 0.9942
IPUMS 0.9284 | 0.9209 | 0.9209 | 0.9209 | 0.9209 | 0.9209
Random Binary 1.0000 | 0.5047 | 0.5095 | 0.5095 | 0.5095 | 0.5184
Shuttle 0.9996 | 0.9946 | 0.9946 | 0.9969 | 0.9957 | 0.9946
Sleep 0.7299 | 0.6553 | 0.6553 | 0.6553 | 0.6553 | 0.6553
Waveform 0.9857 | 0.9653 | 0.9653 | 0.9653 | 0.9753 | 0.9753

of 1,000 instances on six of the eleven data sets. This suggests that such a
convergence detection method is prone to detect convergence early in the sam-
pling schedule. This is unsurprising, especially with few additional samples, as
small differences in training set size are unlikely to make significant differences
in predictive accuracy.

Table 6.3 shows the accuracy of the scheduled sample size at which conver-
gence was detected for varying numbers of additional samples. The accuracy
obtained when using the full training set is also shown.

All training sets with all numbers of additional samples show a loss of ac-
curacy compared to the full training set, with the most dramatic losses on the
Cover Type and Random Binary data sets. The Cover Type data set loses ap-
proximately 30% of the accuracy obtainable from the full training set, while

the loss is close to 50% with Random Binary. The Sleep data set also loses
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Table 6.4: Number of data sets within accuracy loss bounds

Accuracy Additional Samples
Loss Bound || 2 |4 |6 (8 10
1% 313313 3
2% 4141415 5
5% TV TT 7

approximately 10%.

Table 6.4 shows the number of data sets that were within given accuracy loss
bounds at the sample size where convergence was detected. As can be seen, only
three data sets obtained accuracy within one per cent of that obtainable with the
full training set, regardless of the number of additional samples. These were the
Fuzzy Boundary, IPUMS, and Shuttle data sets. Perhaps more importantly, with
each number of additional samples, four data sets were not within five per cent
accuracy bounds. This suggests that using this method to detect convergence
may result in substantial accuracy loss, as convergence is prematurely detected.

The results call into question previous results concerning LRLS [84], where
the start of the global curve plateau was considered to be the size at which accu-
racy was within one per cent of that of the full training set. These results show
few of the data sets used converged within this bound. However, it is claimed
that the LRLS local gradient of tangent method is effective in determining con-
vergence with accuracy close to that obtainable with the full training set [84].

The above table provides evidence contrary to that conclusion.

6.4 Conclusions

Conditions under which learning curve methodologies will be more efficient than

learning from the full training set were investigated. A formula for determining
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the maximum number of sample points for which learning curve methods will
be more efficient than learning from the full training set has been introduced in
Section 6.2 for a geometric sampling schedule. Graphs show that as algorithm
efficiency is increased, the number of samples that can be used while maintaining
efficiency decreases. This suggests that if highly efficient algorithms are to be
employed, using learning curves may be a risky proposition, as relatively few
sample sizes can be used in curve estimation. Potential effects of this could be
poor estimation of the learning curve or strict bounds on the number of samples
that can be explored before convergence must detected to ensure efficiency.
Experiments were performed to investigate the effectiveness of methods that
determine convergence by analysing the local gradient of the tangent to the
curve. The results show that this method often detects convergence when local
accuracy is far from that obtainable with the full training set. Accuracy of
the sample size at which convergence was detected was within one per cent
of that obtainable with the full training set for only three of the eleven data
sets, suggesting that this method is not reliable in detecting the global accuracy
plateau. This may be due to the apparent frequency of local accuracy plateaus

or local accuracy maxima.
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Chapter 7

Conclusions

This dissertation has investigated issues relating to the use of classification learn-
ing algorithms with large data sets, and methods to overcome problems which
have been identified. A bias/variance framework has been proposed for analysing
the performance of learning algorithms at differing data set sizes. Existing meth-
ods have been compared and new methods proposed, developed, and evaluated.

Section 7.1 summarises the work detailed in each chapter. Section 7.2 dis-
cusses directions for future research. Software developed to facilitate the exper-
iments of this dissertation are outlined in Section 7.3. Section 7.4 re-iterates the

main conclusions presented in previous chapters.

7.1 Summary

The dissertation investigated a number of aspects relating to learning from large
data.

Chapter 3 described experiments investigating whether different types of al-
gorithm are required with large data sets than with small data sets. An analysis
of the bias plus variance decomposition of error was performed. This focused on

how the profile of predictive error changes as training set size increases, lead-
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ing to the conclusion that bias reduction is most important at large data set
sizes. The bias reduction potential of decision tree grafting was therefore inves-
tigated, as was the potential of increasing representational power. These results
may provide useful insights with regard to the development of future algorithms
specifically designed for use with large data sets.

Chapter 4 provided a rigorous comparison of the traditional notions of sam-
pling, here termed pre-sampling and sub-sampling. Comparisons were made in
terms of predictive accuracy, model complexity, and execution time. The way in
which these vary as training set size increases was also analysed. This research
may aid practitioners in making appropriate choices when faced with large data.

Chapter 5 investigated ways of improving sub-sampling. The effects of dis-
proportionate sampling and replacement on inferred models were analysed. Two
new methods of selecting instances were also proposed. Variable Proportion
Sampling selects an increasing percentage of available instances as tree depth
increases. SQ Sampling dynamically determines sample size at a node using a
measure of sample quality. These methods were compared to sub-sampling as
used in Chapter 4. SQ Sampling was shown to infer models from the largest
data sets used without loss of accuracy, but with a substantial saving of time.
It may thus provide a viable means of using sub-sampling with large data sets.

Chapter 6 analysed the feasibility of using learning curves to determine opti-
mal sample size. The analysis consisted of two parts. The first part investigated
limitations on the sampling scheme to ensure a reduction in execution time as
compared to learning from the full training set. The second part investigated
the reliability of methods that determine convergence of the learning curve by
calculating the gradient of the tangent to the curve, and their susceptibility to
local accuracy plateaus. The results call into question the general applicability
of learning curve estimation methods, and the reliability of gradient of tangent

estimation to produce models without substantial loss of accuracy.
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7.2 Further Research

There is wide scope for future research following from insights gained in this
thesis.

Chapter 3 showed that bias becomes an increasingly dominant factor of error
as training set size increases. Learning algorithms that focus on bias manage-
ment rather than variance management could therefore have the potential to
perform exceptionally well with large data sets. One way in which increased bias
management may be achieved is to select the best of a number of algorithms,
similar to stacking. However, stacking will increase execution time drastically.
An alternative may be to employ a hybrid of stacking and pasting [11], such
that models are built using a number of algorithms on small training sets, with
the best model at each step kept for inclusion in the committee. The process
can then be repeated, allowing for the possibility of a committee of a number
of different types of models. Although this would likely lead to an increase in
execution time, using small training sets would mitigate any increase.

Given the high accuracy of sub-sampling, more efficient sub-sampling method-
ologies may prove useful. Reducing the execution time of sub-sampling could
increase the viability of using sub-sampling with large data sets.

A pasting-like approach could be employed at each node of a decision tree.
Numerous small samples of available data could be selected, with the best split
found for each sample. The attribute that wins a majority vote could then
be selected as the attribute on which to split at that node. If the attribute is
discrete, no further search must be performed. If the attribute is continuous,
then either the split with the highest utility could be used, or a search performed
on the selected attribute only to find the best potential split. This may reduce
execution time while having the advantage of building a single model.

Further research into different methods of performing sub-sampling could

prove fruitful. The results concerning SQQ Sampling suggest it is possible to
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infer models with accuracy close to that obtainable on the full training set while
determining sample size at each node. Further research into ways of speeding
this up may be beneficial, especially into ways of making the calculation of

sufficiency more computationally efficient.

7.3 Software Developed

A number of modifications to C4.5 Release 8 were required to perform this

research. These were:

1. Extension to allow pre-sampling.
2. Extension to allow sub-sampling.

3. Implementation of sub-sampling variants to allow samples to be selected

with and without replacement and with and without disproportionate sam-

pling.

4. Extension to include Variable Proportion Sampling and SQ sampling.

The OC1 induction algorithm was also extended to collect results regarding

bias and variance.

7.4 Conclusions
The principal conclusions of this thesis are:

1. Variance has been shown to decrease and bias to become a larger propor-
tion of error as training set size increases. This can be expected to occur
regardless of the bias plus variance profile of the induction algorithm. Bias
has been shown to generally decrease as training set size increases, but

whether or not this occurs may be dependent on the bias plus variance
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profile of the algorithm. The increasing proportion of bias error is shown
to be due to the natural trend for variance to decrease with larger training
sets. Together, these results suggest that bias management becomes more

important with larger training sets.

. The cause of bias and variance has been analysed. Two causes of bias —
erroneous extrapolation of a concept and lack of representational power —
have been identified as areas in which algorithms may deliberately target

bias reduction.

. Decision tree grafting becomes less effective as a bias reduction method as

training set size increases, although it remains useful for reducing variance.

. An increase in representational power will reduce the bias component of
error when learning from large training sets, but does not necessarily result
in an overall decrease in error. The behaviour of bias reduction mechanisms

has also been shown to alter with increased training set size.

. Experimental comparisons of popular sampling methodologies showed sub-
sampling to produce substantially more accurate and more descriptive
models than pre-sampling when using the same sample size. Sub-sampling
was found to produce models with greater predictive accuracy than those
obtainable without sampling using the full training set, without decreas-
ing model complexity. Sub-sampling allows a practitioner to have high
confidence that an acceptably accurate model will be produced, with a
likely saving of execution time over learning from the full training set.
Pre-sampling almost guarantees a saving of execution time, but does so at

a high risk of substantially reduced accuracy.

. An investigation into the effects of selecting disproportionate sub-samples

and selecting sub-samples without replacement showed disproportion-
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10.

11.

ate sampling to have a stronger influence on model accuracy than non-
replacement. Simplifying the sampling process by using replacement more
frequently resulted in a decrease in execution time than did removing dis-

proportionate sampling.

. Determining sub-sample size by selecting samples of variable proportions

was shown to produce models with accuracy comparable to that of no

sampling and with a saving of execution time.

Sample Quality (SQ) sampling showed determining sub-sample size by us-
ing a statistical measure of sample quality to produce models with accuracy
very close to that obtainable without sampling. On the largest data sets
used, SQ sampling substantially decreased execution time without loss of

accuracy.

. The evaulation of the statistical quality of a sample was extended to in-

clude continuous attributes.

The viability of learning curves was investigated and a formula derived
to determine the maximum number of sample points that can be used
while ensuring a reduction of execution time over learning from the full
training set. An analysis showed that the more computationally efficient
an algorithm is, the fewer samples it can use to estimate a learning curve

while maintaining reduced execution time.

The reliability of methods that determine learning curve convergence through
analysis of the gradient of the tangent to the curve was investigated. Ex-
periments showed that, due to the non-monotonicity of the curves, such
methods often detect convergence before the global accuracy maximum is
reached by finding local accuracy plateaus. Combined with the potential
inefficiency of learning curve methods, this result suggests significant risk

in the use of learning curves for estimating optimal sample size.
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Classification learning from large data sets is likely to be a continual problem
for machine learning and data mining practitioners. It can be expected that data
set, sizes and computing power will continue to increase, but it is unlikely that the
size of main memory or the speed of processors will advance sufficiently quickly
to reduce the strain increased data set size will put on computing resources.
This research has investigated ways in which the problem of large data can be
mitigated. The comparison of sampling methodologies provides practitioners
with insight into how sampling can best be employed to suit their needs, and
the value and cost of replacement and disproportionate sampling. The analysis
into the efficiency and reliability of learning curve methods has shown surprising
results concerning the number of samples that can be used to estimate a learning
curve, and that methods that detect convergence by analysing the gradient of
the tangent to the curve can result be substantially less accurate models than
previous work might suggest. Finally, the future design of algorithms may be
aided by evidence that different types of algorithm to those commonly used may
be required when learning from large data sets. As data sets continue to grow,
it may become increasingly important to use the right sort of algorithm with

large data sets.
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