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Time series classification




Land use mapping from earth observations

Broad-Leaved Tree

Soybean



Many aspects of a series may be relevant

¢ From EXACTLY THE SAME time series:

» Frequency
— Racing vs normal pulse

» Variance in frequency
— Irreqular vs normal heartbeat

» Amplitude
— Strong vs weak pulse

> Local pattern
— Fault in valve vs normal from shape of peak in ECG

» Global pattern
— Declining or improving heartbeat




Many specialized techniques

Nearest neighbor with specialized similarity
measures

Shapelets
Dictionary

nterval statistics

Deep learning

Ensembles



However, circa 2019 the most accurate classifiers did not scale
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Our accurate and scalable TSCs

* Tree-based: Proximity Forest
and 7S-CHIEF
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Abstract

Maost methods for lime serics
high computational complexi
datasets, and a
focus on a single type of Teature such as shape or Fre
success of convolutional neural networks for time seri
simple linear classifiers using random ¢ I kern
accuracy with 4 fraction of the computational expense of existin s, Using this
methad, it is possible 1o train and test a classifier on all 85 “bake latasets in the
UCR archive in < 2 h. und iLis possible 10 train a classifier on a large dataset of more
than one million time series in approximately | h.

assilication thal altain statc-ol-the-art accuracy have
ven for smaller
methods
Building on the recent
cation, we show that
atezofihe:nrt

Keywords Sculable - Time series classification - Random - Convolution

1 Introduction

Most methods for time serics classification that atfain state-of-the-art accuracy have
high computational complexity, requiring significant training time even for smaller
datesets, and simply do not seale to large datasets. This has motivated the development
of more scalable methods such as Proximity Forest (Lucas ef al. 2019), TS-CHIEF
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Convolution on images vs. time series

The result of applying an edge detection
convolution on an image
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Time Series Convolutions
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Time Series Convolutions

== nput (X)

—e— kernel (W)
—e= QUtput (X* W —b)
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Sum to zero

¢ When weights sum to-zero, the kernel el
—e— gutput (X*W - b)
> respondsto the local s}pe
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Dilation

=== input (X)
dilation =1 e oUtpUL (X* W — b)




Dilation

=== input (X)

=== output (X* W - b)

dilation = 2
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Dilation

=== input (X)

=== output (X* W - b)

=4

dilation

T
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Proportion of Positive Values (PPV)

b=0.0 — ppv=0.49

* W —
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PPV and Bias

XrW—b Xtw-b XrW—b

b =50 — ppv =0.13 b =0.0 — ppv=0.49 b=-50 — ppv=0.9
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Exploit power of convolutional filters

¢ Convolutional filters can capture many different
types of feature of a time series

» Frequency, Amplitude, Local pattern, Global pattern
¢ Generate a large number — 10,000

¢ Learn simple linear classifier
> Logistic regression when number of examples is large

> Ridge regression when number of examples is small
— Stronger reqgularisation
— Faster for small sample size

21



ROCKET: Random choices per kernel

Length: {7, 9, 11}

Weights: N(0, 1), then normalized to sum to zero
Bias: U(-1, 1)

Dilation: 2Y(0- 4, where A limits kernel to series length
Padding: (T, F}

Pooling operators: PPV + Max

22



ROCKET

input (X)

v

VAL convolution

kernel (W) & bias (b)

»
L

X*W-b

» .
»

pooling

{max, ppv}
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Time relative to number of training examples
(Satellite dataset)

Accuracy vs Training 5et Size

Training Time vs Training Set Sjze
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Training Time vs Time Series Length

Time relative to series length (Inlineskate
dataset)
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MINIROCKET: Fixed choices per kernel

Length: 9

Weights: {—1, 2}, such that sum to zero
Bias: from convolution output

Dilation: fixed (relative to input length)

Padding: (T, F}
Pooling: PPV
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MINIROCKET

input (X)

v

s

kernel (W) & bias (b)

convolution
*optimised*

A 4

X*W-—b

pooling

A

ppV
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Scalability: MINIROCKET vs ROCKET

*restricted to 1 CPU core*

num. training examples

time series length
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MultiRocket

input (X)

A 4

kernel (W) & bias (b)

convolution
*optimised*

[
Ll

X*W-—b

pooling

A

PPV (how many)

Mean Positive Value (how strong)

Mean Positive Value Index (where)

Longest Stretch of Positive Values (how dispersed)



MultiRocket vs MiniRocket (accuracy)

MiniRocket (50k) vs MultiRocket 25/27/76
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Benchmark accuracy (UCR repository)

ProximityForest HIVE-COTE 2.0
STC MultiRocket

[ J/TDE TS-CHIEF
DrCIF MiniRocket
Arsenal InceptionTime
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An independent assessment

‘ROCKET is the best ranked and by far the fastest classifier and
would be our recommendation as the default choice for
Multivariate Time Series Classification problems.

Ruiz, A.P, Flynn, M., Large, J. et al. The great multivariate time series
classification bake off: a review and experimental evaluation of recent
algorithmic advances. Data Mining and Knowledge Discovery (2020).
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An independent assessment

‘There are currently four algorithms with reasonable claim to being state of
the art for TSC based on experimentation on the recently expanded UCR archive
(Dau et al. 2019). These are: the deep learning approach called InceptionTime
(Fawaz et al. 2020); the tree based Time Series Combination of Heterogeneous
and Integrated Embedding Forest (TS-CHIEF) (Shifaz et al. 2020); the Random
Convolutional Kernel Transform (ROCKET) (Dempster et al. 2020); and the
heterogeneous meta-ensemble Hierarchical Vote Collective of Transformation-
based Ensembles (HIVE-COTE) (Lines et al. 2018), the latest version of which is
called HIVE-COTE version 1.0 (HC1) (Bagnall et al. 2020).

‘ROCKET is a very fast classifier that has state-of-the-art accuracy, and we
believe it is the most important recent development in the field.

Middlehurst, M., et al. HIVE-COTE 2.0: a new meta ensemble for time series
classification. Machine Learning 110, 3211-3243 (2021).
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H d ra Dempster, A., Schmidt, D. F., & Webb, G. I.
y HYDRA: competing convolutional kernels for fast and accurate

time series classification.
Data Mining and Knowledge Discovery, in press.
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Research opportunities

Additional pooling operators LT .

iiiiiiii

Employ other forms of kernel

Use ROCKET features in other time series analytics
» Forecasting, regression, clustering, anomaly detection, ...

Use non-linear classifiers

Apply to other data types
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Conclusions

e ROCKET revolutionized time series classification
e state of the art accuracy
e many orders of magnitude less computation

e MINIROCKET achieves another order of magnitude speed up
e shows that stochasticity does not directly contribute to accuracy

e MULTIROCKET provides substantial gain in accuracy for modest computation

e HYDRA provides a further consistent gain in accuracy for modest computation

e We believe in reproducible research:
o ROCKET — https://qithub.com/anqus924/rocket

o MINIROCKET — https://github.com/angqus924/minirocket
o MULTIROCKET — https://qithub.com/ChangWeiTan/MultiRocket
o HYDRA — https://github.com/anqus924/hydra



https://github.com/angus924/rocket
https://github.com/angus924/minirocket
https://github.com/ChangWeiTan/MultiRocket
https://github.com/angus924/hydra

Thank you!
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