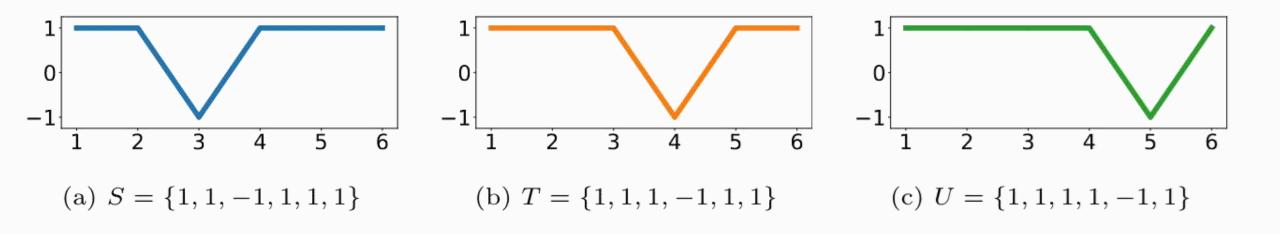
Recent Advances in Assessing Time Series Similarity Through Dynamic Time Warping Geoff Webb Monash University http://i.giwebb.com Work with C. W. Tan, M Herrmann & F. Petitjean

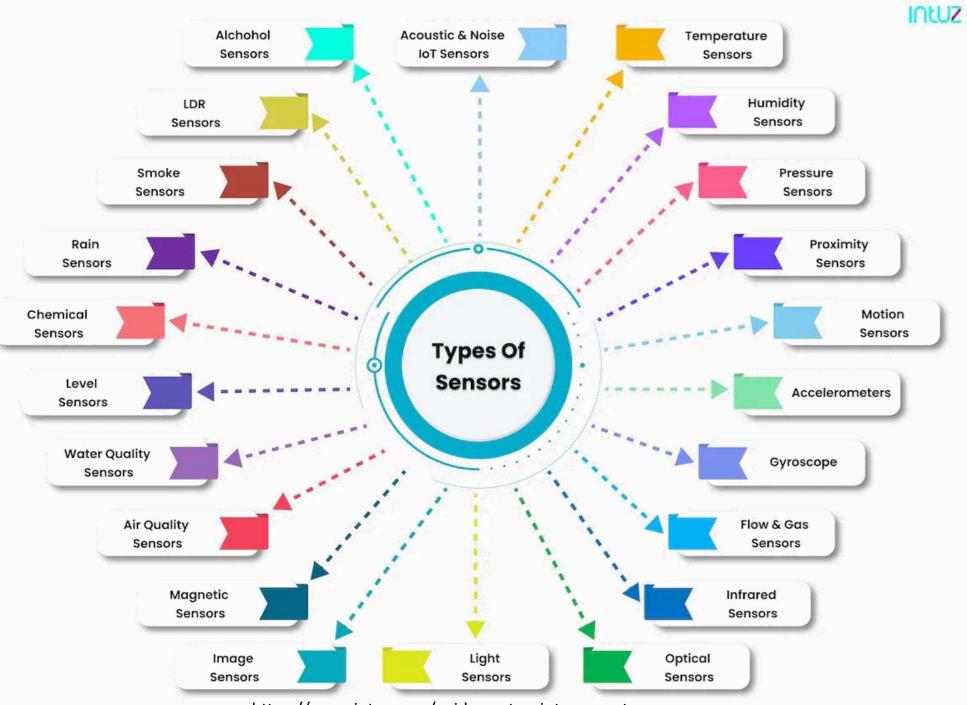
Outline

- Similarity assessment for time series
 - > Dynamic Time Warping (DTW)
- Fast DTW computation
 - Early abandoning and pruning
- DTW variants
 - Cost function tuning
 - > Amerced Dynamic Time Warping

Time series

Time series





https://www.intuz.com/guide-on-top-iot-sensor-types

Applications

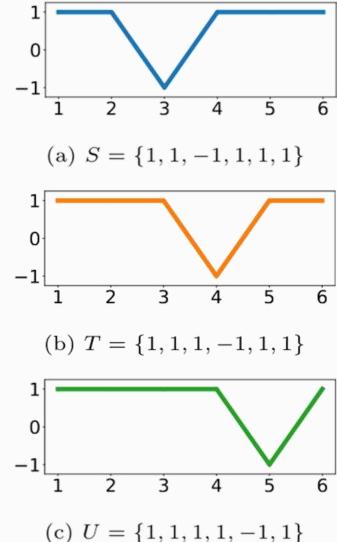
- Finance
- Health
- Environmental monitoring
- Equipment monitoring and control
- Process monitoring and control
- Online systems
- Logistics

Similarity assessment for time series

Similarity assessment is foundational for data science

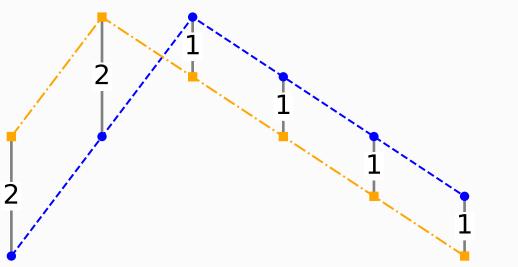
Underpins

- Classification
- > Regression
- Clustering
- Anomaly & outlier detection
- Sequence alignment
- Recommender Systems
- Feature extraction
- Information retrieval



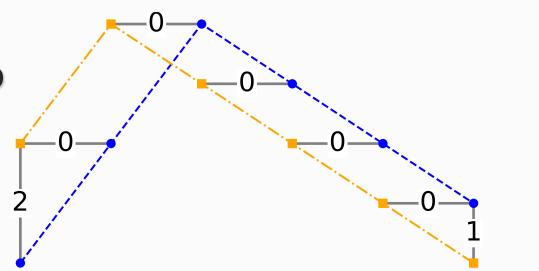
Time series distance measures

- Assess similarity in terms of *distance* between series
- Direct Alignment sums differences between points at same time step



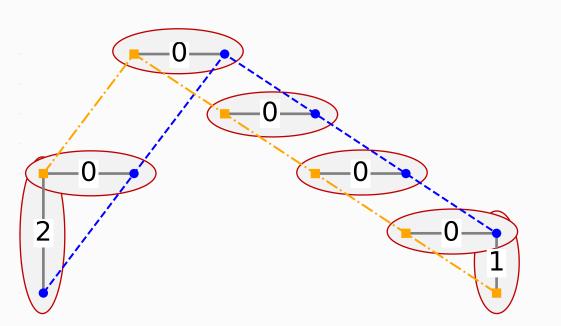
Time series distance measures

- Assess similarity in terms of *distance* between series
- Direct Alignment sums differences between points at same time step
- Dynamic Time Warping allows alignments across time steps



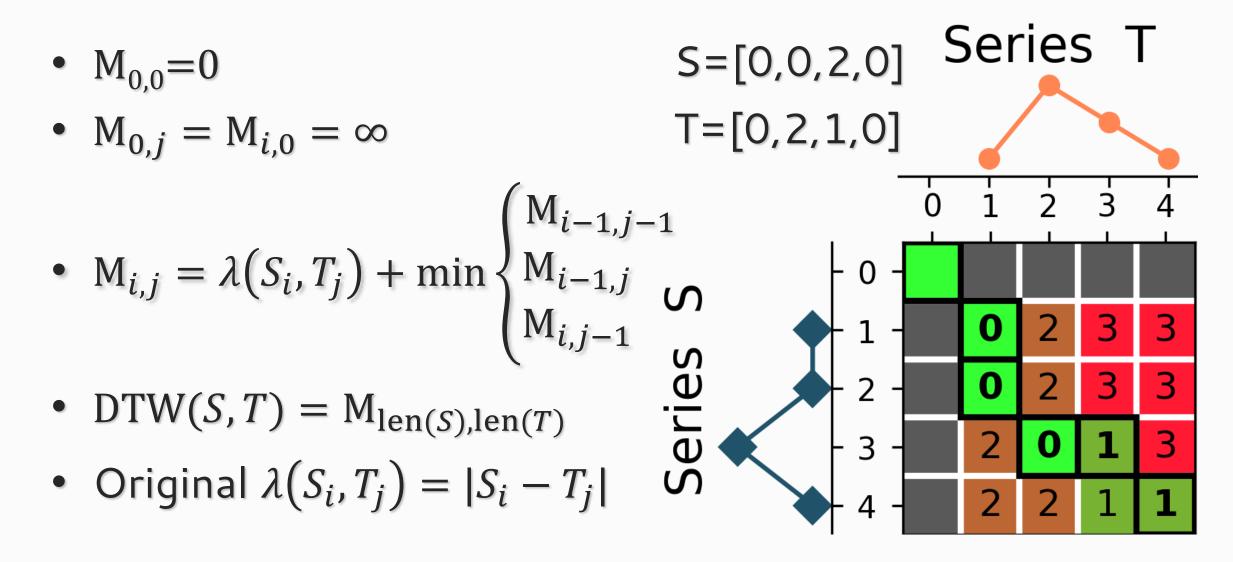
Dynamic Time Warping (DTW)

- Popular distance measure for time series
- First points are aligned
- Last points are aligned
- Successive alignments advance by at most one time step along each series

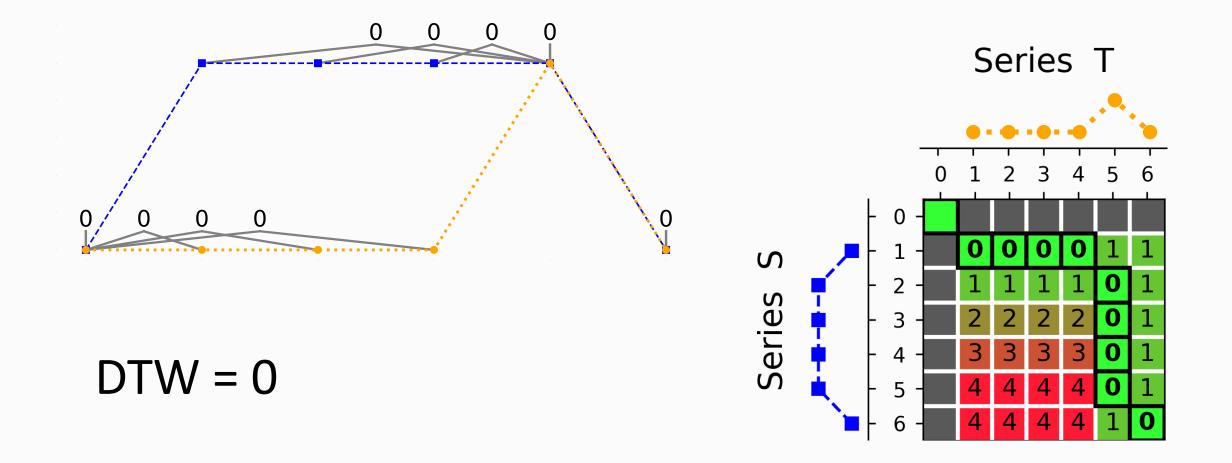


Distance = minimum cost path that satisfies these constraints

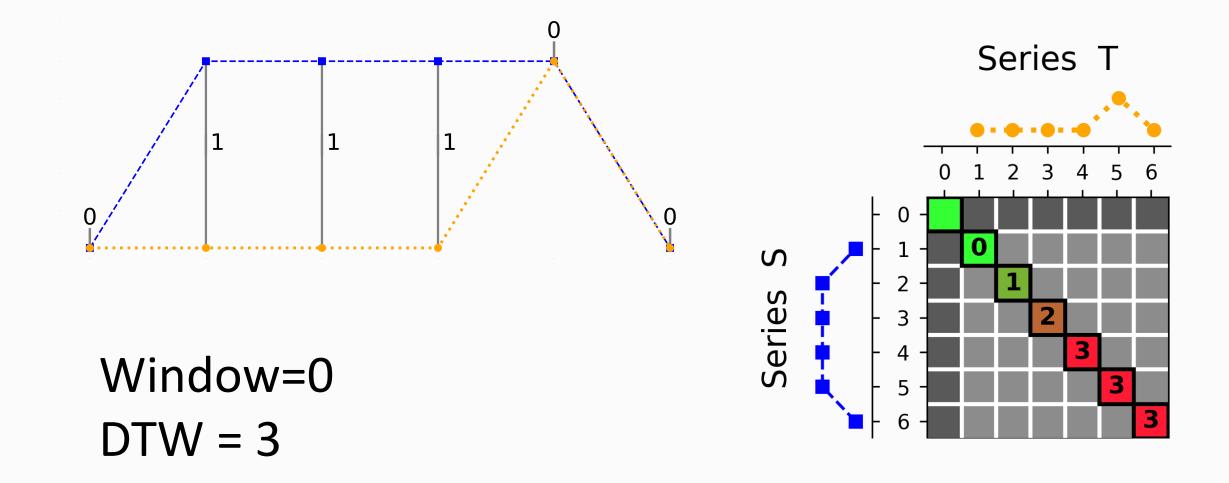
Dynamic programming calculates DTW efficiently

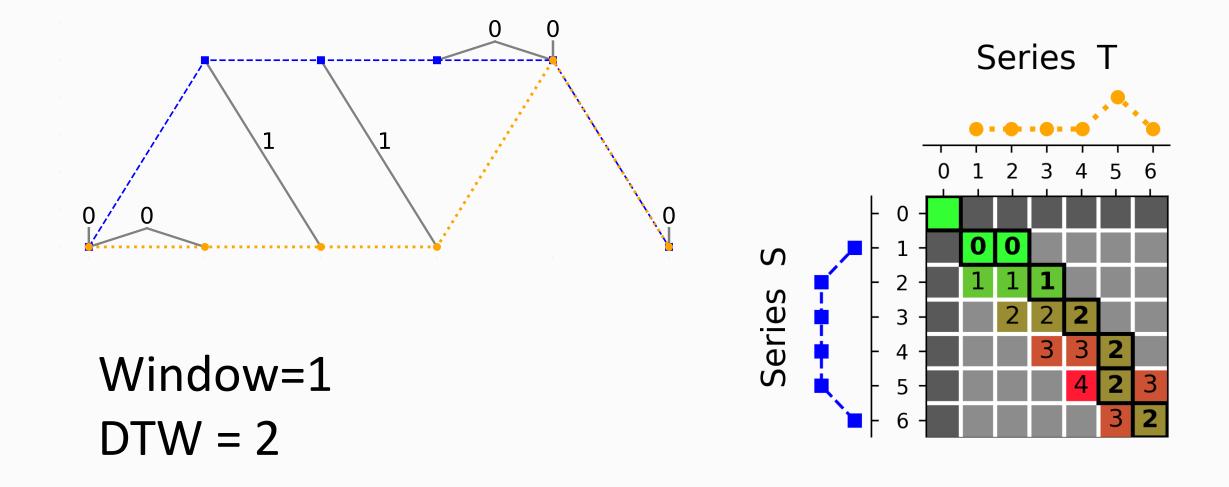


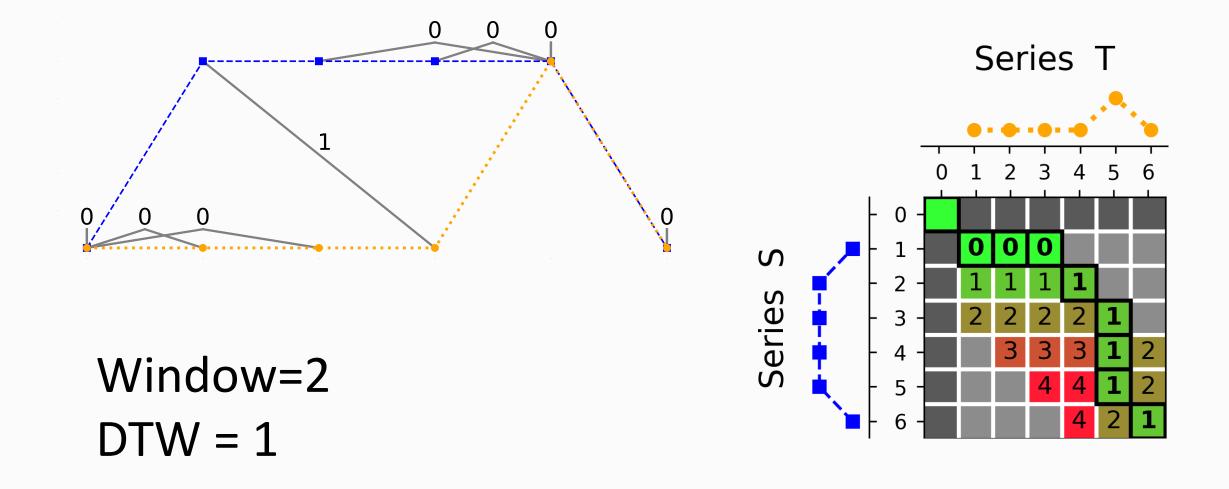
DTW's warping can be too permissive

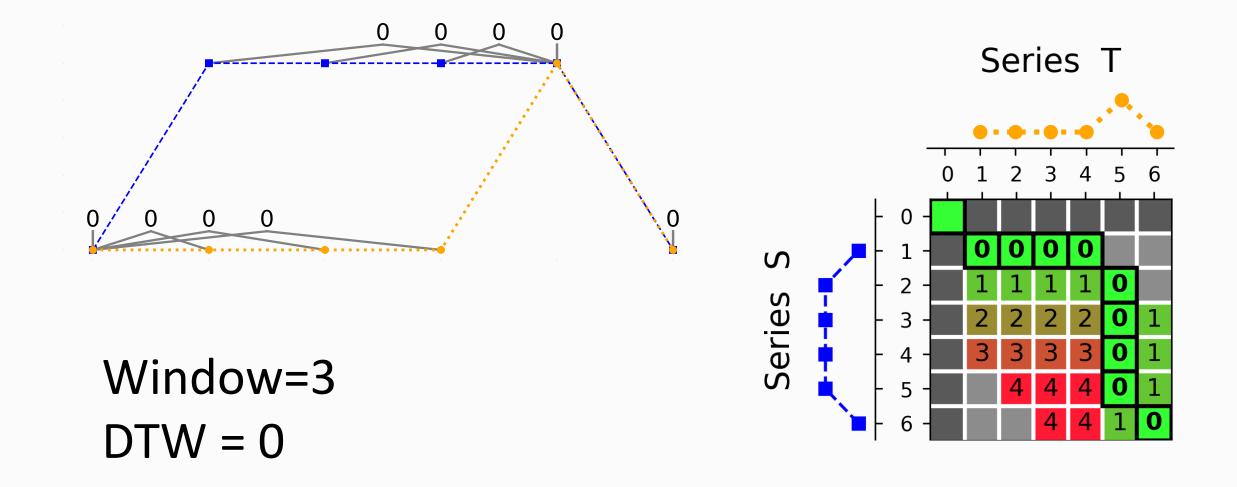


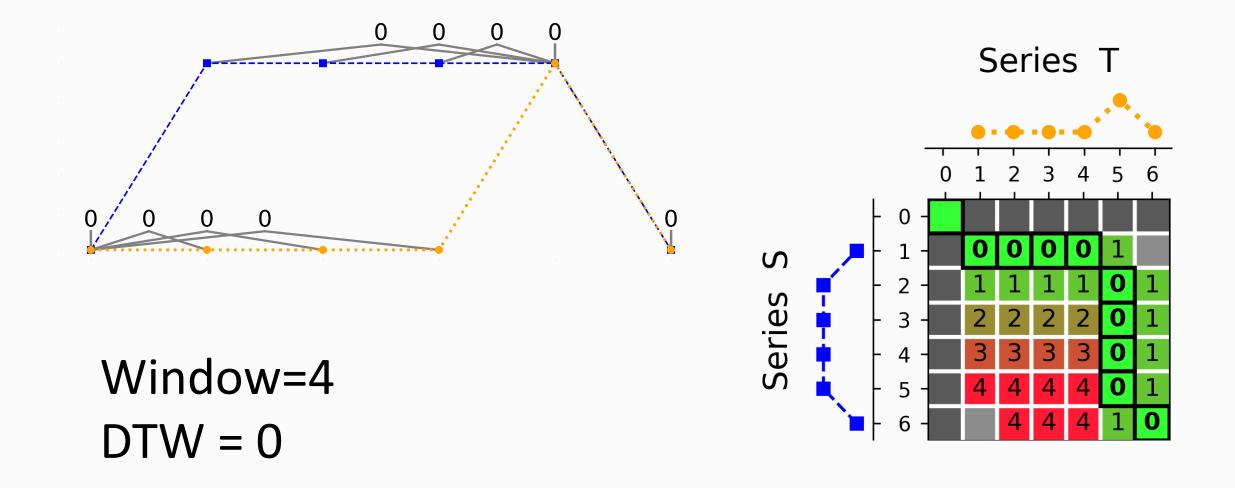
- Adds further constraint: points cannot be aligned if separated by more than WINDOW time steps
- Distance is path with minimum cost that obeys constraints







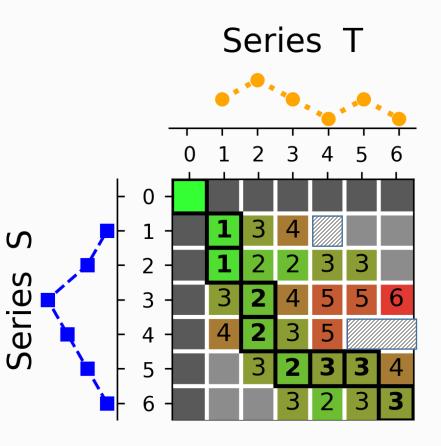




Fast DTW computation

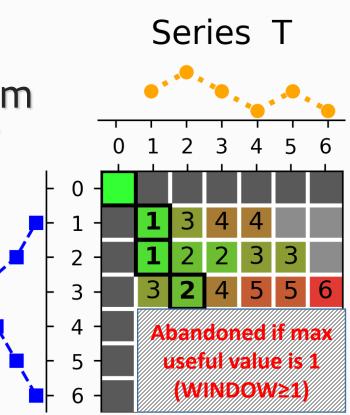
Fast DTW computation

- Naïve approach must fill the entire matrix
 - \succ O(len(S) × len(T))
- Pruning: Given a maximum useful value, skip computation of cells that are on paths that exceed that value
 - Either cost of direct alignment path or an external factor such as the distance to the closest neighbour found so far



Fast DTW computation

- Naïve approach must fill the entire matrix
 - \succ O(len(S) × len(T))
- Early Abandoning: Given a maximum useful value, abandon computation if all paths exceed that value



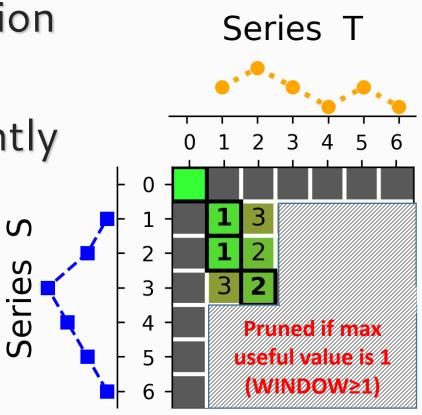
S

S

Ser

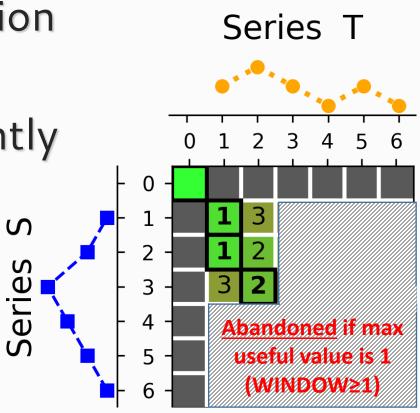
Our Method Early Abandoning AND Pruning

- Based on realization that when all paths are pruned the computation should be abandoned.
- Implements pruning more efficiently than previous approaches
- Unlike previous approaches, achieves abandoning without any significant computational overhead

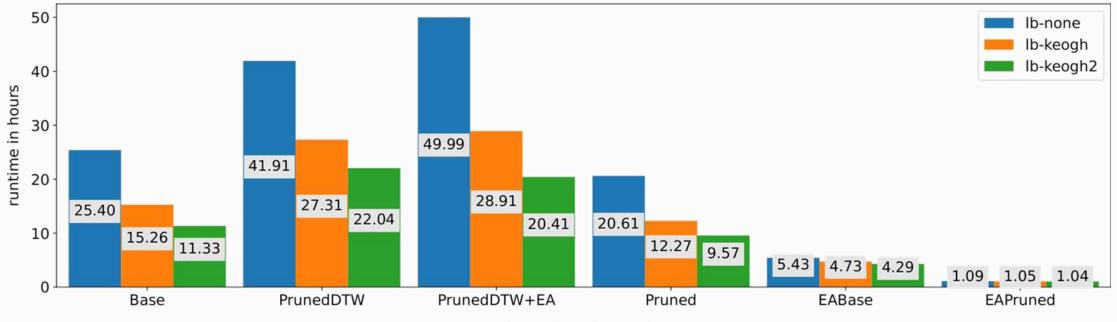


Our Method Early Abandoning AND Pruning

- Based on realization that when all paths are pruned the computation should be abandoned.
- Implements pruning more efficiently than previous approaches
- Unlike previous approaches, achieves abandoning without any significant computational overhead



Time in hours to process the UCR benchmark



lower bounds / mode

Cost function tuning

Cost function tuning

- The cost function determines the penalty for each alignment of two points 2.00 $\gamma = 0.5$ $\gamma = 2.5$
- The original cost function was $\lambda(S_i - T_j) = |S_i - T_j|$
- $\lambda(S_i T_j) = (S_i T_j)^2$ also popular
- We explore

$$\lambda_{\gamma}(S_i - T_j) = |S_i - 0.05 | 0.25 | 0.50 | 0.75 | 0.00 | 0.75 | 0.00 | 0.00 | 0.$$

1.75

1.00 Cost

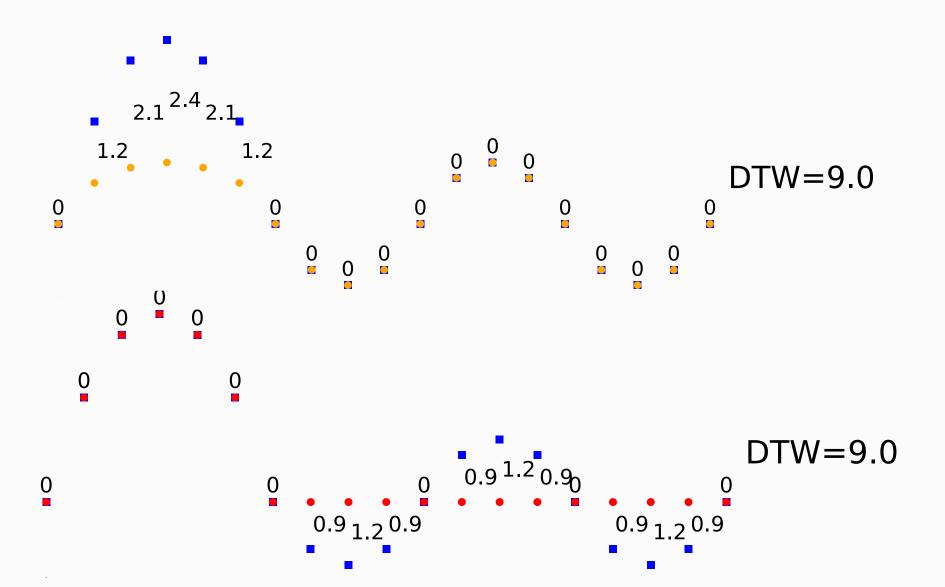
0.75

0.50

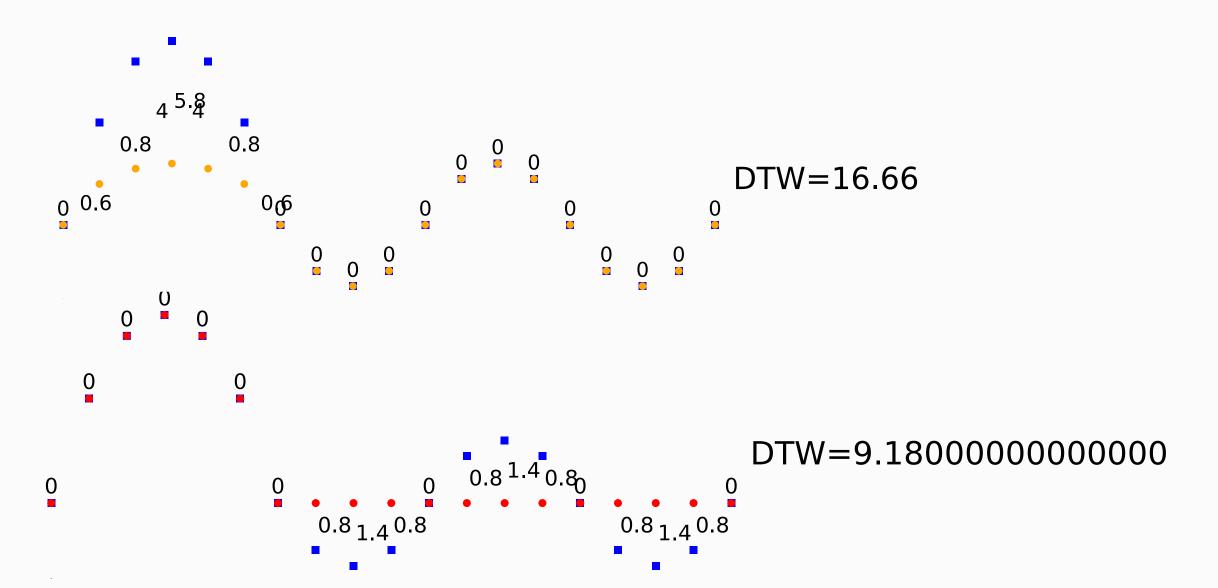
v = 1.5

Absolute difference

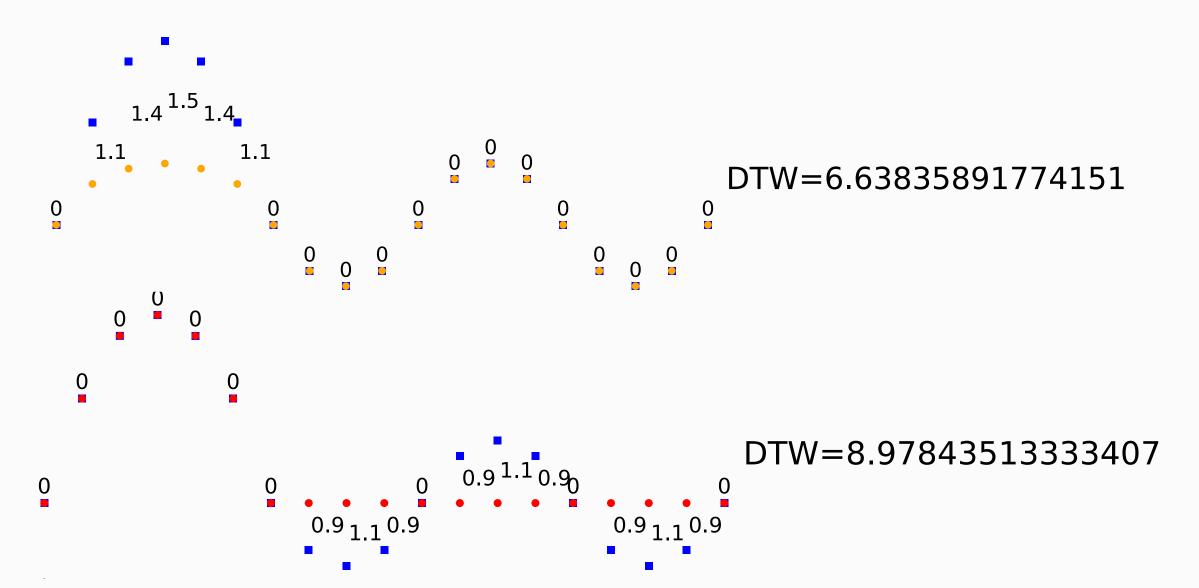
Distances using $\lambda(S_i - T_j) = |S_i - T_j|$



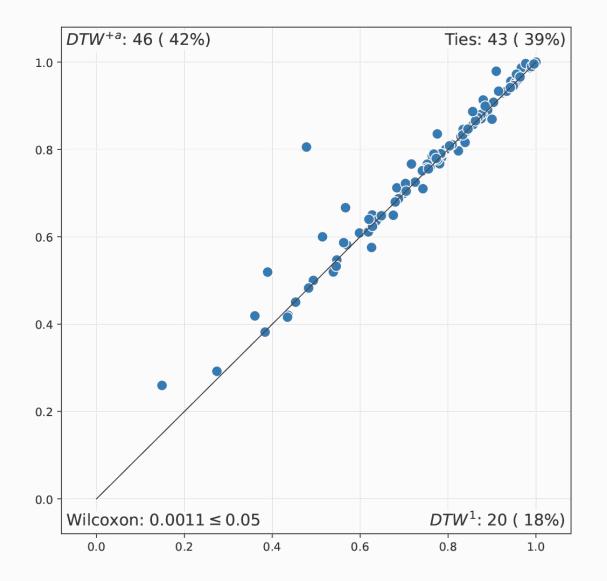
Distances using $\lambda(S_i - T_j) = (S_i - T_j)^2$

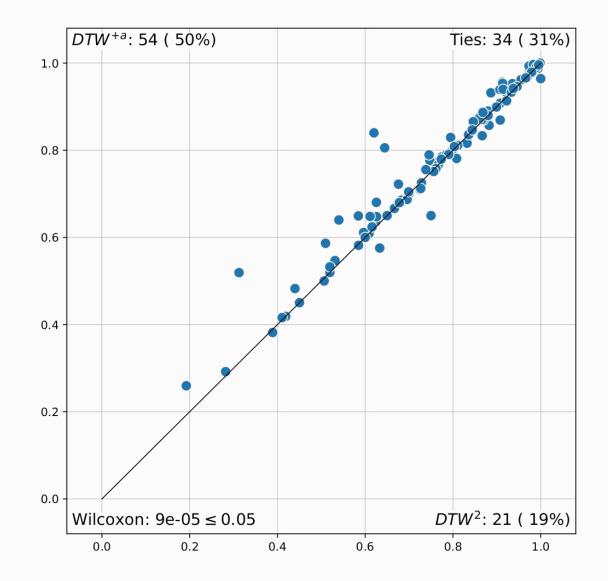


Distances using $\lambda_{\gamma}(S_i - T_j) = |S_i - T_j|^{0.5}$



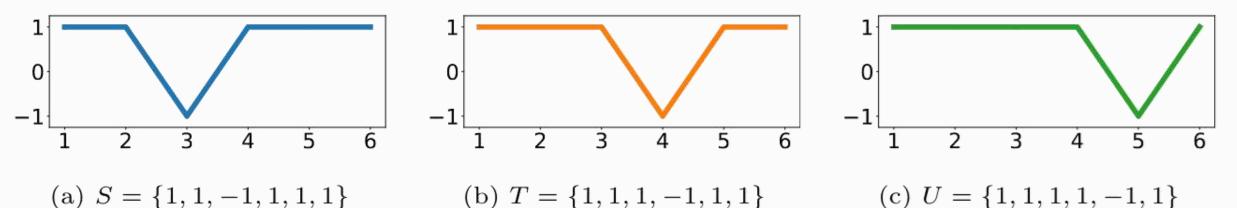
Cost tuning against fixed cost - UCR



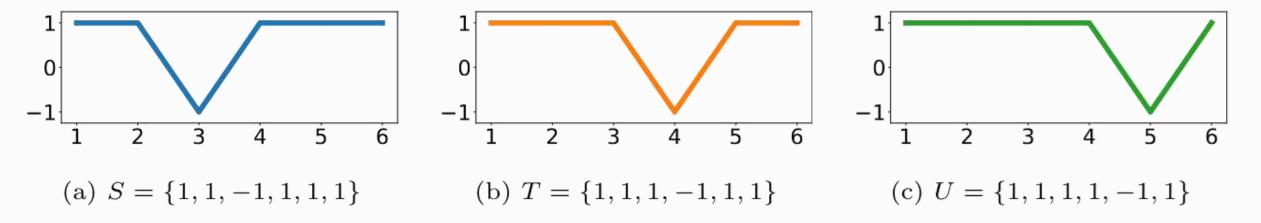


Amerced Dynamic Time Warping

Amerced Dynamic Time Warping (ADTW)



- Intuitively S closer to itself than T, and S closer to T than U dist(S,S) < dist(S,T) < dist(T,U)
- With $DTW_{\infty} = DTW$ with no window, we have $DTW_{\infty}(S,S) = DTW_{\infty}(S,T) = DTW_{\infty}(S,U) = 0$
- With DTW, we have a "step function"
 - $w \ge 2$, DTW(S,S) = DTW(S,T) = DTW(S,U)=0
 - w = 1, DTW(S,S) = DTW(S,T) = 0 < DTW(S,U) = 8
 - w = 0, DTW(S,S) = 0 < DTW(S,T) = DTW(S,U) = 8



 New distance ADTW with additive penalty omega ω ω=0, ADTW(S,S) = ADTW(S,T) = ADTW(S,U)
0<ω<4, ADTW(S,S) < ADTW(S,T) < ADTW(S,U)
ω≥4, ADTW(S,S) < ADTW(S,T) = ADTW(S,U)

DTW

- $M_{0,0} = 0$ $M_{0,j} = M_{i,0} = \infty$

ADTW

• M_{0,0}=0

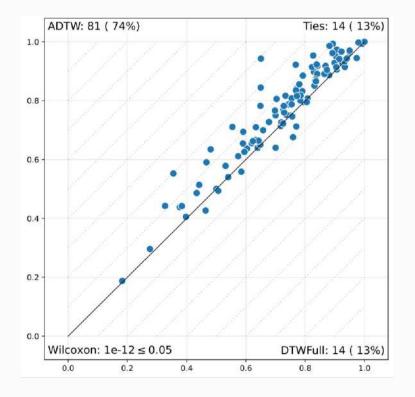
•
$$M_{0,j} = M_{i,0} = \infty$$

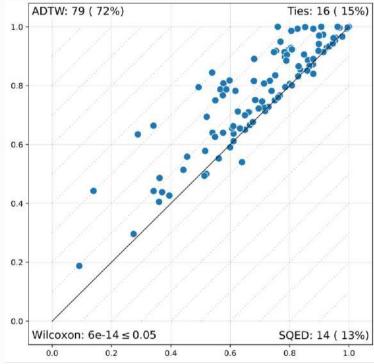
•
$$M_{i,j} = \gamma(S_i, T_j) + \min \begin{cases} M_{i-1,j-1} \\ M_{i-1,j} \\ M_{i,j-1} \end{cases}$$
 •
$$M_{i,j} = \gamma(S_i, T_j) + \min \begin{cases} M_{i-1,j-1} \\ M_{i-1,j} + \omega \\ M_{i,j-1} + \omega \end{cases}$$

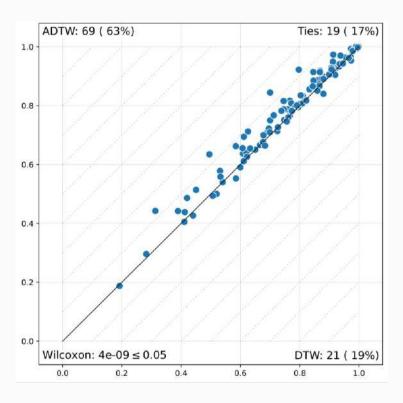
ADTW properties

- Symmetric: ADTW(S,T) = ADTW(T,S)
- ADTW(S,T) = ADTW(reverse(S), reverse(T))
- Monotonic with respect to $\boldsymbol{\omega}$
- $ADTW_0(S,T) = DTW_{\infty}(S,T)$
- $ADTW_{\infty}(S,T) = DTW_{0}(S,T)$
- So with $0 \le \omega \le \infty$ we have DTW_{∞}(S,T) \le ADTW(S,T) \le DTW₀(S,T)

Comparison with DTW







ADTW vs DTW_∞

ADTW vs DTW₀

ADTW vs DTW_w

Concluding remarks

Research opportunities

- How to select meta parameters for tasks like clustering without objective performance measures
 - > w for DTW
 - $\succ \omega$ for ADTW
 - Cost function for all DTW variants
- Other classes of cost function
- Evaluate cost function tuning and ADTW in other tasks

Conclusions

- EARLY ABANDONING AND PRUNING supports very fast exact calculation of DTW and its variants
- COST FUNCTION TUNING can greatly improve DTW utility
- ADTW is an effective alternative to windowing for constraining warping in DTW
- We believe in reproducible research: 📚 🖌
 - <u>https://github.com/MonashTS/tempo</u>

Matthieu Herrmann and Geoffrey I. Webb (2021) Early abandoning and pruning for elastic distances including dynamic time warping. *Data Mining and Knowledge Discovery*. 35(6): 2577–2601. doi: 10.1007/s10618–021–00782–4.

Matthieu Herrmann, Chang Wei Tan and Geoffrey I. Webb (in press) Parameterizing the cost function of Dynamic Time Warping with application to time series classification. *Data Mining and Knowledge Discovery*. Matthieu Herrmann and Geoffrey I. Webb (2023) Amercing: An Intuitive and Effective Constraint for Dynamic

Time Marsing Dettern Decempition 127, article no 100222 dais 10 1016/i nates 2022 100222

Questions?

Matthieu Herrmann and Geoffrey I. Webb (2021) Early abandoning and pruning for elastic distances including dynamic time warping. *Data Mining and Knowledge Discovery*. 35(6): 2577-2601. doi: 10.1007/s10618-021-00782-4.

Matthieu Herrmann, Chang Wei Tan and Geoffrey I. Webb (in press) Parameterizing the cost function of Dynamic Time Warping with application to time series classification. *Data Mining and Knowledge Discovery*.

Matthieu Herrmann and Geoffrey I. Webb (2023) Amercing: An Intuitive and Effective Constraint for Dynamic Time Warping. *Pattern Recognition*. 137: article no 109333. doi: 10.1016/j.patcog.2023.109333.