-

J\‘/ Q k ] E] = J J’ / argifVe

v/’* Jragate Qm ‘
5 ': : ‘ GHREKE] Rt
2 P i e e g

[
L N A
o U

I

il



http://i.giwebb.com/

Time series classification




~Land use mapping from earth observations

Broad-Leaved Tree

Soybean



Many aspects of a series may be relevant

¢ From ONE ECG:

» Frequency
— Racing vs normal pulse

» Variance in frequency
— Irreqular vs normal heartbeat

> Amplitude 10 MJST KNOW ECG RHYTHMS
— Strong vs weak pulse OSMSRIHA iy OF AVBLOCK —

> Local pa ttern AT RIHL F IBRILLAT 0N " @AV BLOCK :MOBHZI Emowz !
— Physiology of the heart and arteries®" . . ® B

» Global pattern o V&ﬁ&:’"ﬂ 0L

®BUNDLE BRF\NCH BLOCKS

,Jﬂ ﬁ“‘ \/”LJVL ’Lﬁ'{}

https //www youtube. com/watch?v vq3ba4BhddM

— Declining or improving heartbeat



Many specialized techniques

Nearest neighbor with specialized similarity
measures

Shapelets
Dictionary

nterval statistics

Deep learning

Ensembles



However, circa 2019 the most accurate classifiers did not scale
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Our accurate and scalable TSCs

* Tree-based: Proximity Forest
and 7S-CHIEF

* Deep Learning: /nceptionlime _.
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Abstract

Maost methods for lime serics
high computational complexi
datasets, and a
focus on a single type of Teature such as shape or Fre
success of convolutional neural networks for time seri
simple linear classifiers using random ¢ I kern
accuracy with 4 fraction of the computational expense of existin s, Using this
methad, it is possible 1o train and test a classifier on all 85 “bake latasets in the
UCR archive in < 2 h. und iLis possible 10 train a classifier on a large dataset of more
than one million time series in approximately | h.

assilication thal altain statc-ol-the-art accuracy have
ven for smaller
methods
Building on the recent
cation, we show that
atezofihe:nrt

Keywords Sculable - Time series classification - Random - Convolution

1 Introduction

Most methods for time serics classification that atfain state-of-the-art accuracy have
high computational complexity, requiring significant training time even for smaller
datesets, and simply do not seale to large datasets. This has motivated the development
of more scalable methods such as Proximity Forest (Lucas ef al. 2019), TS-CHIEF
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Convolutions on images

The result of applying an
edge detection convolution
on an image




Time Series Convolutions
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Time Series Convolutions
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Sum to zero

¢ When weights sum to-zero, the kernel el
—e— gutput (X*W - b)
> respondsto the local s}pe
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Proportion of Positive Values (PPV)

b=0.0 — ppv=0.49

* W —
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Exploit power of convolutional filters

¢ Convolutional filters can capture many different
types of feature of a time series

» Frequency, Amplitude, Local pattern, Global pattern
¢ Generate a large number — 10,000

¢ Learn simple linear classifier
> Logistic regression when number of examples is large

> Ridge regression when number of examples is small
— Stronger reqgularisation
— Faster for small sample size

19



ROCKET: Random choices per kernel

Length: {7, 9, 11}

Weights: N(0, 1), then normalized to sum to zero
Bias: U(-1, 1)

Dilation: 2Y(0- 4, where A limits kernel to series length
Padding: (T, F}

Pooling operators: PPV + Max

20



ROCKET

input (X)

v

VAL convolution

kernel (W) & bias (b)

»
L

X*W-b

» .
»

pooling

{max, ppv}
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Mean Accuracy

ROCKET
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MINIROCKET: Fixed choices per kernel

Length: 9

Weights: {—1, 2}, such that sum to zero
Bias: from convolution output

Dilation: fixed (relative to input length)

Padding: (T, F}
Pooling: PPV

23



MINIROCKET

input (X)

v

s

kernel (W) & bias (b)

convolution
*optimised*

A 4

X*W-—b

pooling

A

ppV
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Mean Accuracy

MINIROCKET
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MultiRocket

input (X)

A 4

kernel (W) & bias (b)

convolution
*optimised*

[
Ll

X*W-—b

pooling

A

PPV (how many)

Mean Positive Value (how strong)

Mean Positive Value Index (where)

Longest Stretch of Positive Values (how dispersed)



Mean Accuracy

MultiRocket
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H d ra Dempster, A., Schmidt, D. F., & Webb, G. I.
y HYDRA: competing convolutional kernels for fast and accurate

time series classification.
Data Mining and Knowledge Discovery, in press.
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Mean Accuracy

Hydra
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Mean Accuracy

MultiRocket+Hydra

0.91 +

0.90 A

0.89 - ® HC2
‘ iRocket+Hydra
0.88 - o MU|’E\RO%"(‘: y & HC1
® MiniRocket g Hydra
0.87 A
® Rocket

0.86
0.85 -
0.84 A 241X < vs HC2

7'2m 15m 30m 1h 2h 1d 2d 1w 2w 4w

Compute Time (Log Scale)

MultiRocket+Hydra

1.0 A

o
[o¢]
1

e
)]
1

s

(=
»
1

o
N
1

0.0 A

MultiRocket+Hydra is better here ,#
.‘. .‘
>,
.. [ ] L ]
!
L]
/D/L ¢
/6/59
[ ]
HC?2 is better here

0.0 0.2 0.4 0.6 0.8 1.0
HC2




Performance on the 30 new UCR datasets
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Research opportunities

Additional pooling operators LT .

iiiiiiii

Employ other forms of kernel

Use ROCKET features in other time series analytics
» Forecasting, regression, clustering, anomaly detection, ...

Use non-linear classifiers

Apply to other data types

34



Conclusions

e ROCKET revolutionized time series classification
e state of the art accuracy
e many orders of magnitude less computation

e MINIROCKET achieves another order of magnitude speed up
e shows that stochasticity does not directly contribute to accuracy

e MULTIROCKET provides substantial gain in accuracy for modest computation

e HYDRA provides a further consistent gain in accuracy for modest computation

e We believe in reproducible research:
o ROCKET — https://qithub.com/anqus924/rocket

o MINIROCKET — https://github.com/anqus924/minirocket
o MULTIROCKET — https://github.com/ChangWeiTan/MultiRocket
o HYDRA — https://github.com/anqus924/hydra



https://github.com/angus924/rocket
https://github.com/angus924/minirocket
https://github.com/ChangWeiTan/MultiRocket
https://github.com/angus924/hydra

While I've got you!

e TempCNN is a leading earth observation analysis method
e SETAR-Tree is a powerful global time series forecaster (A7i, 16:30, Tuesday)

e LB_Enhanced dominates LB_Keogh on speed and tightness

e UltraFastMPSearch gives very fast distance measure meta—-parameter tuning
e ADTW improves on windowing for DTW

e Cost function tuning is a powerful tool for DTW (Al1li, 14:20 Wednesday)
e EAP greatly speeds up DTW and variants

e InceptionTime is the most accurate Deep Learning method on UCR repository

e ConvTran is significantly more accurate than InceptionTime on UEA
multivariate repository (best journal track papers, 10:30 Wednesday)

e Proximity Forest 2 is the leading similarity classifier on UCR repository
e QUANT shows that all you need is quantiles



Thank you!
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