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ABSTRACT

The merits of incorporating feature construction to assist selective induction in learning hard
concepts are well documented. This paper introduces the notion of function attributes and
reports a method of incorporating functional regularities in classifiers. Training sets are pre-
processed with this method before submission to a selective induction classification learning
system. The method, referred to as FAFA (function attribute finding), is characterised by
finding bivariate functions that contribute to the discrimination between classes and then
transforming them to function attributes as additional attributes of the data set. The value of
each function attribute equals the deviation of each example from the value obtained by
applying that function to the example. The expanded data set is then submitted to classification
learning. Evaluation with published and artificial data shows that this method can improve
classifiersin terms of predictive accuracy and complexity.

1. Introduction:

Sdective-induction or attribute-based classfication learning techniques perform poorly when the
attributes are ingppropriate for the target classfiers. One solution is to have the learning system
congruct features (higher leve attributes) from exigting atributes automaticaly. Past research
includes Renddl & Seshu [1990], Pagdlo & Hausder [1990], Wnek & Michaski [1994] and
Yip & Webb [1992a, 1992b, 1994]. Unlike most previous research on constructive induction,
our techniques are designed for use in preprocessing training data for subsequent use by any
gandard selective induction system.

2. Towardsa function attribute construction algorithm:

2.1 Theoretical perspectives:

This paper describes a technique which differs from previous approaches to congructive
induction by seeking to identify functiond regularities between atributes in training examples and
incorporate them as more concise components of classfiers. Suppose we have an instance
space where X and Y are the attributes of examples classfied as either positive '+ or negative '-'.
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Suppose the postive ingances fit well on alinear function: Y=aX+b. The dassfiers one would
like are:

If (Y=aX+b) then class = positive;  If (Y aX+b) then class = negative.

In red Stuations, we rarely have such perfect fit. A more redidtic Stuation isin Figure 1. The
problem isto find a classfier to describe the decision surfaces as indicated by the dotted lines.

Figure 1: An instance space with two attributes

In finding functional regularities for incorporation in classfication learning, the following
problem issues arise: (1) We need methods which have the flexibility to find and represent
specific functions able to exclude negative ingances, as wel as functiond descriptions generd
enough to cover positive instances which do not closdly fit a function. (2) The next issue is the
familiar search problem. The number of candidate functions increases rapidly as the number of
attributes and function types increases. (3) Ancther issue is finding functiond regularities within
subsets of the data. In building decision trees, functiond regularities can be searched when each
nodeis crested. However, thiswill further exacerbate the search problem.

Among machine learning function finding literature, BACON [Langley, Simon, Bradshaw &
Zytkow, 1987], is a data driven system to discover function regularities. While such a method
can tackle the mode-driven large search space problem, it can only find specific functiona
regularities which are often not observed in red data Methods to incorporate BACON in
classfication learning [Yip and Webb, 19924] performed well on contrived artificia data sets but
remained unfruitful on real data s=ts.

2.2 Converting a function to a function attribute:

Consider Figure 1 again. Suppose wefit alinear function to the positive examples asillugtrated
in Figure 2.

Y=axX+b

Figure 2: Aninstance spaceto illustrate function attribute

We can convert the linear function into an attribute D with vaues equd to the deviation of each
examplei (with atributes: X; Y; ), from thelinear function, i.e.



D=(Y; - Y;') where ;' =aX;+b. Let D, and Dy, be the lower and upper bound of the deviation
of pogtive examples from the linear function. Then, we can capture the functiond regularities with
the following class descriptions:

If (D £D £ D) then class=positive; If (D>Dy) V (D<D,)) then class=negative

In this way, we can encapsulate the information described by a function in an attribute, referred
to as a ‘function atribute. While smple linear functions can be represented by discriminate
attributes searched by other methods [Yip & Webb, 1992b, 1994], the notion of function
attributes is distinguished by its ability to represent complex nonlinear functions. Thus, the merits
of function attributes are that they can represent complex functions and they have the flexihility to
encapsulate both specific and less specific functiond  regularities.

2.3 Incorporating bivariate functions as attributes in classification learning:

In this research, we focus on finding bivariate functions and representing them as function
atributes. The advantages of bivariate functions are that they are smple and there is no
implication of causd or predictive rdaions. In this research, we condder the function st:
{Y=aX+b; Y=aX", Y=aX"+b}. The function atribute finding process garts by examining
classes which cannot be digtinguished from other classes by exiding atributes. The set of
bivariate functions are fitted on pairwise combinations of existing numeric attributes. Each of the
functions so derived are transformed into a function attribute, the vaues of which are the
deviation of each example from that function. Those function attributes with discriminant
performance, as determined by an evaluation function, are selected as additiond attributes to the
origina attribute set. The expanded data set is then subjected to a classfication learning system.

3. Function attribute finding algorithm (FAFA):

FAFA, is an dgorithm, which finds, among a st of bivariate function candidates, those that can
contribute to the digtinguishability of the pogtive class from the negetive. Fird it generates a set
of bivariate candidate functions by subgtituting pairwise combinations of exigting atributes into a
st of pre-defined bivariate functions. Then, the dgorithm checks if any of the existing attributes
can discriminate the examples of the dass of interest (POS) from other classes (NEG). If thereis
none, the adgorithm moves on. A function is seected from the candidate function set and then
fitted on POS usng the least square criterion, with norma equations for linear functions or
progressive hill climbing [Yip and Webb, 1993] for nonlinear functions. The associated R2, a
measure of the fitnesst is noted. The candidate bivariate function is then transformed into a
function atribute. The discriminant performance of the function attribute is determined by an
evauation function. In this research, the evauation function is as follows Firg the cross
vaidation discriminant performance of the target machine learning system is determined. If a
function attribute's range can discriminate a a higher level, the new attribute is accepted. If the
discriminant performance of the function attribute is perfect and the associated R2 passes a

1R2 ranges from O to 1. Suppose we have N pairs of observationsof X and Y. Letf be the fitted function and
let Y'=f(X): R? =1-(& (Y;-Y{)%/ & Y;?).



predefined fitness vaue, the attribute is returned, displacing al attributes sdected so far and the
agorithm stops. The FAFA agorithm be expressed as follows:
Input: POS (a st of ingtances belonging to the class of interest)
NEG (a st of instances NOT belonging to the class of interest)
Output: S: aset of function attribute(s) derived from functions selected from the function
st (FS) or return "No function attribute found” or "No function attribute necessary”.
Begin
FS- {Y=aX+b; Y=aXn; Y=aX"+b)}
where X and Y are numeric attributes; a, b, and n are congtants;
PO -~ asat of pairwise combination of origina attributes;
FOUND -~ Fdse
Initidise parameter: mf (maximum fitness) (eg. mf=0.99);
If POS can be digtinguished from NEG by any of the origind attributes on its own,
set FOUND - True, return "No function attribute necessary”;
dse
Generate a st of bivariate functions F - {Y;=Ff,(X,): il FS; (X;,Y;)I PO};
Initidise dl functions of F to unchecked;
While not FOUND and not dl functions checked
Begin
Take the next unchecked function FA from F;
Fit the function FA on POS; note the R2 and derive function attribute (A);
Derivetherange of A (RA) and evduate its discriminant performance (PN) which
is the percentage of NEG ingtances with deviation not within RA;
If PN = 100 and R2>=mf, st S- {A}, FOUND -~ True
eseif PN > Paformance criterion (PC), include A in S
End {while};
End.
Further, to find functiondl regularities within in subsets, the agorithm searches for functiond
regularities in subsets partitioned by discrete attributes (if any). The combination of FAFA with
selective induction can be expressed as follows:
Input: atraining set of ingtances (T)
Output: classfiers
Begin
function attribute(s) -~ FAFA(T);
ET(Extended training set) -  Extend descriptions of ingtances to include
function attribute(s) as additiona attribute(s);
dassfiers—  Sdective induction dassfication learning (ET)
End.

4. Evaluation:



Two target sdective induction classfication learning systems are used. C4.5 [Quinlan, 1993] isa
decison tree based system. Eingtein [Webb, 1992], a variant of Aq [Michalski, 1983] is a
decison rule based sysem. Extensve evauation has been performed [Yip, 1994]. Two
representative studies are presented below.  In the following tabulation of results, FAFA+CA.5,
for example, represents the method of treating the data set with FAFA before submission to
CA5; "Accuracy™ refers to predictive accuracy on unseen instances and "Complexity” refersto
the number of nodes of the decison tree or the number of rules of the classfier. A par-wiset-
test is used for comparison.

4.1 Sudy 1:

In this study, the New-thyroid data from UCI [Murphy & Aha, 1994] with 215 ingtances is
used. With tenfold cross vdidation, the predictive accuracy and complexity of classfiers
averaged over 10 runs can be presented as follows:

Method Accuracy(% Complexity (nodes/rules)
(1) CA.5 (pruned) 92 16
C4.5 (rules) 92.47 71
(2) FAFA+CA4.5 (pruned) 94.38 9.8
(compared with (1)) (t=0.89) (t=8.19; p£.0005)
FAFA+CA4.5 (rules) 94.38 5.2
(compared with (1)) (t=0.74) (t=6.86; p£.0005)
(3) Eingen 91.91 7
(4) FAFA+Eingtein 93.34 6.1
(compared with (3)) (t=1.96, p£.05) (t=3.25; p£.005)

In the above tabulation, we observe that by applying FAFA, the complexity of induced classfiers
is sgnificantly reduced and predictive accuracy of Eingein significantly increased. The effect of
FAFA can be further examined by plotting the performance versus training size grgph. In this
study, 20% of the data st is used as the evauation set and the training set consids, in turns, of
40%, 60% or 80% of the data set. The performance of the induced trees or rules for each
traning set dze is evauated over 10 runs. The accuracy performance and complexity
comparison can beilludrated in the following graphs:
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Figure 3: FAFA+C4.5(pruned) vs. C4.5(pruned) and FAFA+Einstein vs. Einstein
Accuracy-Training_size-plot on New-thyroid data set

In Figure 3, we obsarve that with FAFA, the predictive accuracy of C4.5(pruned) is significantly
increased at 60% but decreased at 40% (typ,=-1.97, PE.O05; tgp,=3.05, PE.OL; tgy,=1.21)
where "tymy,", for example, represents the tvaue a training set Sze of 40%. The predictive
accurecy of Eingein is sgnificantly increased at 40% and 80% (t4p,=2.45, PE.025; tg00,=0;
t80%:3’ p£01)
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Figure 4: FAFA+C4.5(pruned) vs. C4.5(pruned) and FAFA+Einstein vs. Einstein
Complexity-Training_size-plot on New-thyroid data
In Fgure 4, we observe tha with FAFA, the complexity of CA4.5(pruned) is sgnificantly
decreased a dl three different training set Sze (t400,=2.69, P£.025; #,=5.16, p£.0005;
tgy,=6.33, PE.0005). The complexity of Einstein rules is sgnificantly decreased a 60% and
80% (ta005=0; te0s=1.96, PE.O5; tgy,=2.75, PE.025). This study shows thet for this deta, in
generd, with FAFA as the pre-classfication learning step, a 80% of the data astraining s&t, the
predictive accuracy of classfiers is increased and complexity significantly reduced. At 60%,
C4.5 responds podtively, while Eingein shows indgnificant changes. At 40%, there are
sgnificant changes in predictive accuracy, with Einstein responding positively but CA4.5 negatively.
The result of CA.5 at 40% suggests when the training set sze is 'smdl’, where 'smdll’ is data set

specific, FAFA should be gpplied with care (eg. usng a more sringent function attribute
selection criterion).



4.2 Sudy 2:

To further illugtrate the merit of FAFA, in this sudy, an artificia data st is generated. The data
&t is generated with the following specification. There are three classes: Pos, Norm and Neg;
each ingance is described by two continuous attributes: X and Y. Let X = {random numbers
between 1 to 100}. For class=Pos. X1 X, Y=2X15+3000; for classsNorm: XI X,
Y =3X15+2000 and for class=Neg: let Y={random numbers between lower and Upper bound of
Y of Posand Norm}, Xi X, YT Y. The data set consists of 200 ingtances of each dlass. The
results of ten-fold cross-validation can be presented as follows:

Method Accuracy(% Complexity (nodes/rules)
(1) CA.5 (pruned) 84.33 92.6
CA5 (rules) 86.33 35.5
(2 FAFA+C4.5
(pruned) 99.33 9
(compared with (1)) (t=9.58, p£.0005) (t=25.41, p£.0005)
(rules) 99.5 5
(compared with (1)) (t=8.55, p£.0005) (t=27.78, p£.0005)
(3) Eingein 88.67 65.3
(4) FAFA+Eingein 100 5

(compared with (3)) (t=8.22, p£.0005)  (t=134.46, p£.0005)

In the above tabulation, we observe that by applying FAFA, the predictive accuracy of induced
decision trees or rules are Sgnificantly increased and complexity significantly reduced.

5. Discussion:

'Function attribute' is introduced in this paper as a notion to represent a functiona relationship
between two or more attributes by a single atribute. In this research, only three types of
bivariate rdations are examined. The techniques are in no way restricted to these relation types.
The notion of function aitribute can be extended to more complex multivariate functiona
relations. Function attributes derived by FAFA summarise data regularities that characterise
different classes of objects. With f bivariate function types, n training instances and p attributes,
the number of bivariate candidate functionsis f.(C}. The agorithm stops when a near perfect

function is found. Hence, the time complexity of FAFA, in the worst case, is of the order
O(n.p2.f).

Thus, one limitation of FAFA is that the computationd time complexity increases in the order
to the sguare of the number of attributes. Second, FAFA is limited to finding functiond relations
that characterise dl instances of one class as different other classes. Though functiond relaions
that characterise subsets of instances as partitioned by discrete attribute are also searched, other
partitions are not addressed. Nevertheless, the counter argument is that functiond relations
based on smdl numbers of instances may be mideading.



6. Concluson:

In this paper, we introduce the notion of function attributes in classfication learning and illudirate it
by incorporating bivariate functiona regularities. Functiona regularities are searched and if
discovered, are converted into additiond attributes. The expanded data set is then subjected to
dassfication learning. Evauation showed that the technique can sgnificantly improve classfier
performance when compared to classfication learning aone. The technique is most suited to
data in which functiond regularities exist that are rlevant to the classfication task. Unfortunately,
we, as yet, do not have techniques for identifying in advance such data sets. That FAFA is useful
for such data is demonstrated by our first study. The success in the second study suggests that
such dataexists in red world applications.

7. Appendix:

For the New thyroid data set, (with the attributes referred to as varn where n refers to the nth
atribute as in the published data sets), based on 80% of data as training set, examples of
bivariate function found are: var5=0.88*var215+9.45; var5=0.0069* var1-0.66;
var5=-0.0159* var41ls; var5=-0.0042*var2+0.058; var5=-0.0087*var3+0.02.
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