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ABSTRACT 
 

The merits of incorporating feature construction to assist selective induction in learning hard 
concepts are well documented.  This paper introduces the notion of function attributes and 
reports a method of incorporating functional regularities in classifiers.  Training sets are pre-
processed with this method before submission to a selective induction classification learning 
system.  The method, referred to as FAFA (function attribute finding), is characterised by 
finding bivariate functions that contribute to the discrimination between classes and then 
transforming them to function attributes as additional attributes of the data set.  The value of 
each function attribute equals the deviation of each example from the value obtained by 
applying that function to the example. The expanded data set is then submitted to classification 
learning.  Evaluation with published and artificial data shows that this method can improve 
classifiers in terms of predictive accuracy and complexity. 

 
 
1.  Introduction: 
 
Selective-induction or attribute-based classification learning techniques perform poorly when the 
attributes are inappropriate for the target classifiers.  One solution is to have the learning system 
construct features (higher level attributes) from existing attributes automatically.  Past research 
includes Rendell & Seshu [1990], Pagallo & Haussler [1990], Wnek & Michalski [1994] and 
Yip & Webb [1992a, 1992b, 1994].  Unlike most previous research on constructive induction, 
our techniques are designed for use in preprocessing training data for subsequent use by any 
standard selective induction system.  
 
2. Towards a function attribute construction algorithm: 
 
2.1 Theoretical perspectives: 
 
This paper describes a technique which differs from previous approaches to constructive 
induction by seeking to identify functional regularities between attributes in training examples and 
incorporate them as more concise components of classifiers.  Suppose we have an instance 
space where X and Y are the attributes of examples classified as either positive '+' or negative '-'.  
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Suppose the positive instances fit well on a linear function: Y=aX+b.  The classifiers one would 
like are: 
If (Y=aX+b) then class = positive;   If (Y≠aX+b) then class = negative. 
In real situations, we rarely have such perfect fit.  A more realistic situation is in Figure 1.  The 
problem is to find a classifier to describe the decision surfaces as indicated by the dotted lines. 
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      Figure 1:  An instance space with two attributes 
 
     In finding functional regularities for incorporation in classification learning, the following 
problem issues arise: (1) We need methods which have the flexibility to find and represent 
specific functions able to exclude negative instances, as well as functional descriptions general 
enough to cover positive instances which do not closely fit a function.  (2) The next issue is the 
familiar search problem.  The number of candidate functions increases rapidly as the number of 
attributes and function types increases.  (3) Another issue is finding functional regularities within 
subsets of the data.  In building decision trees, functional regularities can be searched when each 
node is created.  However, this will further exacerbate the search problem. 
    Among machine learning function finding literature, BACON [Langley, Simon, Bradshaw & 
Zytkow, 1987], is a data driven system to discover function regularities.  While such a method 
can tackle the model-driven large search space problem, it can only find specific functional 
regularities which are often not observed in real data.  Methods to incorporate BACON in 
classification learning [Yip and Webb, 1992a] performed well on contrived artificial data sets but 
remained unfruitful on real data sets.   
 
2.2 Converting a function to a function attribute: 
 
Consider Figure 1 again.  Suppose we fit a linear function to the positive examples as illustrated 
in Figure 2.   
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     Figure 2: An instance space to illustrate function attribute 
 
We can convert the linear function into an attribute D with values equal to the deviation of each 
example i  (with attributes: Xi Yi ),  from the linear function, i.e.  



 

D=(Yi - Yi') where Yi' =aXi+b.  Let DL and DU be the lower and upper bound of the deviation 
of positive examples from the linear function. Then, we can capture the functional regularities with 
the following class descriptions: 
If (DL ≤ D ≤ DU ) then class=positive;  If  ((D>DU)  V  (D<DL))  then class=negative  
In this way, we can encapsulate the information described by a function in an attribute, referred 
to as a 'function attribute'.  While simple linear functions can be represented by discriminate 
attributes searched by other methods [Yip & Webb, 1992b, 1994], the notion of function 
attributes is distinguished by its ability to represent complex nonlinear functions.  Thus, the merits 
of function attributes are that they can represent complex functions and they have the flexibility to 
encapsulate both specific and less specific functional  regularities. 
 
2.3 Incorporating bivariate functions as attributes in classification learning: 
 
In this research, we focus on finding bivariate functions and representing them as function 
attributes.  The advantages of bivariate functions are that they are simple and there is no 
implication of causal or predictive relations.  In this research, we consider the function set: 
{Y=aX+b; Y=aXn; Y=aXn+b}.  The function attribute finding process starts by examining 
classes which cannot be distinguished from other classes by existing attributes.  The set of 
bivariate functions are fitted on pairwise combinations of existing numeric attributes.  Each of the 
functions so derived are transformed into a function attribute, the values of which are the 
deviation of each example from that function.  Those function attributes with discriminant 
performance, as determined by an evaluation function, are selected as additional attributes to the 
original attribute set.  The expanded data set is then subjected to a classification learning system. 
 
3. Function attribute finding algorithm (FAFA): 
 
FAFA, is an algorithm, which finds, among a set of bivariate function candidates, those that can 
contribute to the distinguishability of the positive class from the negative.  First it generates a set 
of bivariate candidate functions by substituting pairwise combinations of existing attributes into a 
set of pre-defined bivariate functions.  Then, the algorithm checks if any of the existing attributes 
can discriminate the examples of the class of interest (POS) from other classes (NEG).  If there is 
none, the algorithm moves on.  A function is selected from the candidate function set and then 
fitted on POS, using the least square criterion, with normal equations for linear functions or 
progressive hill climbing [Yip and Webb, 1993] for nonlinear functions.  The associated R2, a 
measure of the fitness1 is noted.  The candidate bivariate function is then transformed into a 
'function attribute'.  The discriminant performance of the function attribute is determined by an 
evaluation function.  In this research, the evaluation function is as follows: First the cross 
validation discriminant performance of the target machine learning system is determined.  If a 
function attribute's range can discriminate at a higher level, the new attribute is accepted.  If the 
discriminant performance of the function attribute is perfect and the associated R2 passes a 

                                                                 
1R2 ranges from 0 to 1.  Suppose we have N pairs of observations of X and Y.  Let f be the fitted function and  
  let Y'=f(X): R2 =1-(∑(Yi-Yi')

2/ ∑Yi
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predefined fitness value, the attribute is returned, displacing all attributes selected so far and the 
algorithm stops.  The FAFA algorithm be expressed as follows: 
Input: POS (a set of instances  belonging to the class of interest) 
          NEG (a set of instances NOT belonging to the class of interest) 
Output: S: a set of function attribute(s) derived from functions selected from the function  
          set (FS) or return "No function attribute found" or "No function attribute necessary".  
Begin 
   FS ← {Y=aX+b;  Y=aXn;  Y=aXn+b)} 
          where X and Y are numeric attributes; a, b, and  n are constants;   
   PO ← a set of pairwise combination of original attributes; 
   FOUND ← False; 
   Initialise parameter: mf (maximum fitness) (e.g. mf=0.99); 
   If  POS can be distinguished from NEG by any of the original attributes on its own,  
     set FOUND ← True, return "No function attribute necessary"; 
   else  
     Generate a set of bivariate functions: F ← {Yi=fi(Xi): fi∈FS; (Xi,Yi)∈PO}; 
     Initialise all functions of F to unchecked; 
     While not FOUND and not all functions checked 
     Begin 
           Take the next unchecked function FA from F; 
           Fit the function FA on POS; note the R2 and derive function attribute (A); 
           Derive the range of A (RA) and evaluate its discriminant performance (PN) which  
                is the percentage of NEG instances with deviation not within RA; 
           If PN = 100 and R2>=mf,  set S ← {A}, FOUND ← True 
           else if  PN > Performance criterion (PC),  include A in S; 
      End {while}; 
End. 
Further, to find functional regularities within in subsets, the algorithm searches for functional 
regularities in subsets partitioned by discrete attributes (if any).  The combination of FAFA with 
selective induction can be expressed as follows: 
Input: a training set of instances (T) 
Output: classifiers 
Begin 
 function attribute(s) ← FAFA(T); 
 ET(Extended training set) ← Extend descriptions of instances to include 
        function attribute(s) as additional attribute(s); 
 classifiers ←  Selective induction classification learning (ET) 
End. 
 
4.  Evaluation: 
 



 

Two target selective induction classification learning systems are used.  C4.5 [Quinlan, 1993] is a 
decision tree based system.  Einstein [Webb, 1992], a variant of Aq [Michalski, 1983] is a 
decision rule based system.  Extensive evaluation has been performed [Yip, 1994].  Two 
representative studies are presented below.  In the following tabulation of results, FAFA+C4.5, 
for example, represents the method of treating the data set with FAFA before submission to 
C4.5; "Accuracy" refers to predictive accuracy on unseen instances and "Complexity" refers to 
the number of nodes of the decision tree or the number of rules of the classifier.  A pair-wise t-
test is used for comparison.  
 
4.1 Study 1: 
 
In this study, the New-thyroid data from UCI [Murphy & Aha, 1994] with 215 instances is 
used.  With ten-fold cross validation, the predictive accuracy and complexity of classifiers 
averaged over 10 runs can be presented as follows: 
Method   Accuracy(%)  Complexity (nodes/rules) 
(1) C4.5 (pruned)  92   16 
     C4.5  (rules)  92.47   7.1 
 
(2) FAFA+C4.5  (pruned) 94.38   9.8 
      (compared with (1)) (t=0.89)  (t=8.19; p≤.0005) 
 
     FAFA+C4.5  (rules) 94.38    5.2 
     (compared with (1)) (t=0.74)           (t=6.86; p≤.0005) 
 
(3)  Einstein   91.91   7 
 
(4) FAFA+Einstein  93.34    6.1 
    (compared with (3)) (t=1.96, p≤.05) (t=3.25; p≤.005) 
 
In the above tabulation, we observe that by applying FAFA, the complexity of induced classifiers 
is significantly reduced and predictive accuracy of Einstein significantly increased.  The effect of 
FAFA can be further examined by plotting the performance versus training size graph.  In this 
study, 20% of the data set is used as the evaluation set and the training set consists, in turns, of 
40%, 60% or 80% of the data set.  The performance of the induced trees or rules for each 
training set size is evaluated over 10 runs.  The accuracy performance and complexity 
comparison can be illustrated in the following graphs: 
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   Figure 3: FAFA+C4.5(pruned) vs. C4.5(pruned)  and  FAFA+Einstein vs. Einstein 
                   Accuracy-Training_size-plot on New-thyroid data set 
 
In Figure 3, we observe that with FAFA, the predictive accuracy of C4.5(pruned) is significantly 
increased at 60% but decreased at 40% (t40%=-1.97, p≤.05; t60%=3.05, p≤.01;  t80%=1.21) 
where "t40%", for example, represents the t-value at training set size of 40%.  The predictive 
accuracy of Einstein is significantly increased at 40% and 80% (t40%=2.45, p≤.025; t60%=0;  
t80%=3, p≤.01). 
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  Figure 4: FAFA+C4.5(pruned) vs. C4.5(pruned) and FAFA+Einstein vs. Einstein 
                  Complexity-Training_size-plot on New-thyroid data 
 
In Figure 4, we observe that with FAFA, the complexity of C4.5(pruned) is significantly 
decreased at all three different training set size (t40%=2.69, p≤.025; t60%=5.16, p≤.0005;  
t80%=6.33, p≤.0005).  The complexity of Einstein rules is significantly decreased at 60% and 
80% (t40%=0; t60%=1.96, p≤.05;  t80%=2.75, p≤.025).  This study shows that for this data, in 
general, with FAFA as the pre-classification learning step, at 80% of the data as training set, the 
predictive accuracy of classifiers is increased and complexity significantly reduced.  At 60%, 
C4.5 responds positively, while Einstein shows insignificant changes.  At 40%, there are 
significant changes in predictive accuracy, with Einstein responding positively but C4.5 negatively.  
The result of C4.5 at 40% suggests when the training set size is 'small', where 'small' is data set 
specific, FAFA should be applied with care (e.g. using a more stringent function attribute 
selection criterion). 



 

 
4.2 Study 2: 
 
To further illustrate the merit of FAFA, in this study, an artificial data set is generated.  The data 
set is generated with the following specification.  There are three classes: Pos, Norm and Neg; 
each instance is described by two continuous attributes: X and Y.  Let X = {random numbers 
between 1 to 100}.  For class=Pos: X∈X, Y=2X1.5+3000; for class=Norm: X∈X, 
Y=3X1.5+2000 and for class=Neg: let Y={random numbers between lower and Upper bound of 
Y of Pos and Norm}, X∈X, Y∈Y.  The data set consists of 200 instances of each class.  The 
results of ten-fold cross-validation can be presented as follows: 
Method   Accuracy(%)  Complexity (nodes/rules) 
(1) C4.5 (pruned)  84.33   92.6 
     C4.5 (rules)  86.33   35.5 
 
(2) FAFA+C4.5  
                    (pruned)  99.33   9 
   (compared with (1))  (t=9.58, p≤.0005) (t=25.41, p≤.0005) 
 
                    (rules)  99.5   5 
     (compared with (1)) (t=8.55, p≤.0005) (t=27.78, p≤.0005) 
 
(3) Einstein   88.67   65.3 
 
(4) FAFA+Einstein  100   5 
     (compared with (3)) (t=8.22, p≤.0005) (t=134.46, p≤.0005) 
 
In the above tabulation, we observe that by applying FAFA, the predictive accuracy of induced 
decision trees or rules are significantly increased and complexity significantly reduced.  
 
5. Discussion: 
 
'Function attribute' is introduced in this paper as a notion to represent a functional relationship 
between two or more attributes by a single attribute.  In this research, only three types of 
bivariate relations are examined.  The techniques are in no way restricted to these relation types.  
The notion of function attribute can be extended to more complex multivariate functional 
relations.  Function attributes derived by FAFA summarise data regularities that characterise 
different classes of objects.  With f bivariate function types, n training instances and p attributes, 
the number of bivariate candidate functions is f pC. 2 .  The algorithm stops when a near perfect 
function is found.  Hence, the time complexity of FAFA, in the worst case, is of the order 
O(n.p2.f). 
     Thus, one limitation of FAFA is that the computational time complexity increases in the order 
to the square of the number of attributes.  Second, FAFA is limited to finding functional relations 
that characterise all instances of one class as different other classes.  Though functional relations 
that characterise subsets of instances as partitioned by discrete attribute are also searched, other 
partitions are not addressed.  Nevertheless, the counter argument is that functional relations 
based on small numbers of instances may be misleading. 



 

 
6. Conclusion: 
 
In this paper, we introduce the notion of function attributes in classification learning and illustrate it 
by incorporating bivariate functional regularities.  Functional regularities are searched and if 
discovered, are converted into additional attributes.  The expanded data set is then subjected to 
classification learning.  Evaluation showed that the technique can significantly improve classifier 
performance when compared to classification learning alone.  The technique is most suited to 
data in which functional regularities exist that are relevant to the classification task.  Unfortunately, 
we, as yet, do not have techniques for identifying in advance such data sets.  That FAFA is useful 
for such data is demonstrated by our first study.  The success in the second study suggests that 
such data exists in real world applications. 
 
7. Appendix: 
 
For the New thyroid data set, (with the attributes referred to as varn where n refers to the nth 
attribute as in the published data sets), based on 80% of data as training set, examples of 
bivariate function found are: var5=0.88*var21.5+9.45;  var5=0.0069*var1-0.66;   
var5=-0.0159*var41.5;  var5=-0.0042*var2+0.058;  var5=-0.0087*var3+0.02. 
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