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Abstract. An ensemble of Super-Parent-One-Dependence Estimators
(SPODEs) offers a powerful yet simple alternative to naive Bayes clas-
sifiers, achieving significantly higher classification accuracy at a moder-
ate cost in classification efficiency. Currently there exist two families of
methodologies that ensemble candidate SPODEs for classification. One
is to select only helpful SPODEs and uniformly average their probability
estimates, a type of model selection. Another is to assign a weight to each
SPODE and linearly combine their probability estimates, a methodology
named model weighing. This paper presents a theoretical and empirical
study comparing model selection and model weighing for ensembling
SPODEs. The focus is on maximizing the ensemble’s classification accu-
racy while minimizing its computational time. A number of representa-
tive selection and weighing schemes are studied, providing a comprehen-
sive research on this topic and identifying effective schemes that provide
alternative trades-off between speed and expected error.

1 Introduction

Semi-naive Bayesian classifiers reduce error by relaxing the attribute indepen-
dence assumption of naive Bayes [1–17]. Among alternative semi-naive forms,
Super-Parent-One-Dependence Estimators (SPODEs) [2, 3], and particularly en-
sembles thereof [13] have received a lot of attention [18–22] because they offer
a combination of high training efficiency, high classification efficiency and high
classification accuracy. Those merits give SPODEs a great potential to substitute
for naive Bayes classifiers in numerous real-world classification systems, includ-
ing medical diagnosis, fraud detection, email filtering, document classification
and webpage prefetching. This paper identifies approaches that can maximize a
SPODE ensemble’s classification accuracy while minimizing its computational
time. This leads to accurate and fast classification algorithms with immediate
and significant impact on real-world applications.



1.1 Terminology and Notation

This paper addresses the problem of classification learning using an ensemble
of Bayesian probabilistic classifiers. The following terminology and notation will
be used throughout the paper. An instance x 〈x1, x2, · · · , xm〉 is a vector of m
attribute values xi, each observed for an attribute variable Xi (i ∈ [1,m]). It
can also have a class label y corresponding to the class variable Y . If its class
label is known, an instance is labeled. Otherwise, it is unlabeled. Training data
D is a set of labeled instances from which a classifier is learned to predict the
class labels of unlabeled instances. The number of training instances is n. The
number of values for Xi is vi. Xi’s parent variables are Φ(i). The number of joint
states (joint instantiated values) of parents of Xi is |φ(i)|. The r-th joint state
of the parents is φir. When applicable, h indicates a SPODE in general and hi

indicates a particular SPODE whose superparent is Xi.

1.2 SPODE and SPODE Ensemble

A SPODE [2, 3] relaxes the naive Bayes (NB) classifier’s attribute independence
assumption by allowing all attributes to depend on a common attribute, the
superparent, in addition to the class, as depicted in Figure 1.
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Fig. 1. Illustration of SPODE versus NB. An arc
points from a parent to a child. A child only de-
pends on its parents. NB assumes each attribute
only depends on the class Y and is independent of
other attributes given the class. SPODE assumes
that each attribute can depend on both the super-
parent X2 and the class.

To classify an instance x, a Bayesian probabilistic classifier calculates P̂ (y |
x), an estimate of the probability of each class label given this instance. The label
attaining the highest probability will be assigned to x. Since P̂ (y | x) = P̂ (y,x)

P (x)

and P (x) is invariant across different class labels, one only needs to calculate
P̂ (y,x). That is, argmaxy P̂ (y | x) = argmaxy P̂ (y,x).

A SPODE with superparent Xp finds argmaxy P̂ (y,x) using P̂ (y,x) =
P̂ (y, xp)P̂ (x | y, xp) = P̂ (y, xp)

∏m
i=1 P̂ (xi | y, xp). The final formula results

from SPODEs’ assumption that all attributes are independent of each other
given Y and Xp.

A SPODE ensemble is a linear combination of multiple SPODEs’ probability
estimates. It seeks argmaxy P̂ (y,x) using: P̂ (y,x) ≈ ∑m

i=1 wiP̂i(y,x), where
each P̂i(y,x) is calculated by a SPODE whose superparent being Xi. For a
training data set with m attributes, there can be m candidate SPODEs, each
taking a different attribute as its superparent.



It has been shown that a SPODE, being a one-dependence estimator, can pro-
vide better probability estimates than NB because it involves a weaker attribute
independence assumption [1–3, 10, 13]. It has also been shown that a SPODE en-
semble can further improve upon the classification accuracy of a single SPODE
by decreasing the classification variance [13, 18]. The first approach to ensembling
SPODEs was AODE [13] which used equal weight combination of all SPODEs
whose parent occurred with a user-specified minimum frequency in the training
data. Subsequent research suggested that frequency is not a useful model selec-
tion criterion and that appropriate weighting can substantially improve upon
equal weighting, proposing weighting schemes such as MAPLMG [18]. On the
other hand, it has also been shown that model selection can be very effective
when ensembling SPODEs [22]. This paper presents a comprehensive investiga-
tion into the relative merits of alternative approaches to weighting and selecting.

2 Model Selection Schemes

The general problem for model selection is, given some sample data, how to de-
cide which are the most effective models within some model space. This paper
looks at the space of SPODE models. Only selected SPODEs will be included
in the ensemble. Previous research has suggested that cross validation, forward
sequential addition and lazy elimination are more effective than alternative se-
lection methods for SPODEs [22, 23]

Cross Validation (CV) [22] scores each individual SPODE by its cross vali-
dation error on the training data. In this study, leave-one-out cross validation is
employed. Given a SPODE, CV loops through the training data n times, each
time training the SPODE from (n − 1) instances to classify the remaining 1
instance. The misclassifications are summed and averaged over n iterations. The
resulting classification error rate is taken as the metric value of the SPODE. The
lower the metric, the higher priority a SPODE should be used. This process is
very efficient as the model need only be updated for each instance that is left out,
rather than recalculated from scratch. Given a sequence of m SPODEs ordered
by their CV values, m ensembles are candidates, from size 1 to size m. Starting
with an empty ensemble, each ensemble in turn includes further one SPODE in
the queue. Every ensemble’s leave-one-out cross validation error is calculated.
The ensemble with the lowest error is the one to be selected.1

Forward Sequential Addition (FSA) [22] begins with an empty ensemble.
It then uses hill-climbing search to iteratively add SPODEs whose individual
inclusion results in the lowest classification error. In each iteration, suppose the
current ensemble is Ecurrent with k SPODEs. FSA in turn adds each candidate
1 If there are multiple ensembles that attain the lowest error, the one with the largest

ensemble size is selected as a means to reduce classification variance caused by model
selection. The same rule also applies to FSA.



SPODE, one that has not been included into Ecurrent, and obtains an ensemble
Etest of size (k +1). It then calculates the leave-one-out cross validation error of
Etest. The Etest with the lowest error is retained and the corresponding added
SPODE is permanently deleted from the candidate list and included into the
ensemble. The same process is applied to the new SPODE ensemble of size
(k + 1) and so on, until every SPODE has been included. The order of addition
produces a ranking order for SPODEs. The earlier a SPODE is added, the more
merit it possesses and the higher its priority to be used. The ensemble which
achieves the lowest error in the adding process is the one to be selected.

Lazy Elimination (LE) CV and FSA select at training time a subset of
SPODEs that are used to classify all test instances. An alternative approach
delays selection until classification time. LE [23] is based on the observation
that ∀a, b, c : P (a | b) = 1.0 entails P (c | a, b) = P (c | b). Hence, if it can be
inferred that one attribute value entails another, assuming conditional indepen-
dence between the values is likely to be harmful and the more general value may
safely be deleted. To this end, before a test instance is classified LE deletes any
attribute value xi of the instance that occurs in the training data more than
a user-defined minimum number of times (in this research, 30) and for which
there is another value xj , j 6= i such that for every training instance containing
xj , xi is also present. If xi and xj are identical, only one is deleted. Effectively,
LE performs lazy selection, by not using SPODEs whose superparents are gen-
eralizations of other values of the instance to be classified. Note however that
it also deletes children from within SPODEs and hence is not solely a SPODE
selection algorithm.

3 Model Weighing Schemes

Model weighing focuses on calculating the weight associated with each SPODE
to linearly combine their probability estimates of P (y,x).

Information-Theoretic Metrics provide a combined score for a proposed
explanatory model (a SPODE in our context) and for the data given the model.
Since they rely upon Shannon information theory [24] for their motivation and
interpretation, they should support the inversion of Shannon’s law to derive the
posterior probability of a model given the data as to be the model’s probabilistic
weight for purpose of prediction. In principle, the weight w for a SPODE h is2:

w = P̂ (h|D) = e−I(h|D) = e−(I(D|h)−I(D)+I(h)) = e(n
Pm+1

i=1 H(Xi,Φ(i)))−I(h)

where H(Xi, Φ(i)) is the mutual information between Xi and its parents:
H(Xi, Φ(i)) =

∑vi

j=1

∑|φi|
r=1

(
P (xij , φir) log P (xij ,φir)

P (xij)P (φir)

)
; and I(h) varies among

different schemes, of which two representative ones are presented below.
2 For simplicity, Xi represents the class variable when i = m + 1. Generally the log

base does not matter. A common practice is to use e or 2.



Bayesian Information Criterion (BIC) According to Schwarz [25]:
IBIC(h) = (log n)

(∑m+1
i=1 (vi − 1)

∏
j∈Φ(i) vj

)
. For any root node Xi (where

Φ(i) = ∅), the product term on the right should be replaced by 1.
Minimum Message Length (MML) According to Korb and Nicholson

[26]: IMML(h) = log(m + 1)! + Cm+1
2 − log(m − 1)! +

∑m+1
i=1

vi−1
2 (log π

6 + 1) −
log

∏m+1
i=1

∏|φi|
j=1

(
(vi−1)!

(Sij+vi−1)!

∏vi

l=1 αijl!
)
, where Sij is the number of training in-

stances where the parents Φ(i) take their joint j-th value, and αijl is the number
of training instances where Xi takes its l-th value and Φ(i) take their j-th joint
value. For any root Xi, |φi| should be treated as 1 and every instance should be
treated as matching the parents for the purposes of computing Sij and αijl.

Bayesian Model Averaging (BMA) provides a mechanism to ensemble clas-
sification models by accounting for single models’ uncertainty of generating the
data [27]. Given an instance x and a set of classifiers hi, BMA estimates the prob-
ability of each class label given x using: P̂ (y | x) =

∑m
i=1 P̂ (y | hi)P̂ (hi | D),

where P̂ (y | hi) is the class probability estimated by a SPODE. One represen-
tative approach to estimating the weight P̂ (hi | D), used in BMA, was pro-
posed by Cooper and Herskovits [28]: wi = P̂ (hi | D) = P̂ (hi,D)Pm

i=1 P̂ (hi,D)
, where

P (hi, D) = P̂ (hi)
∏m+1

k=1

∏|φi|
j=1

(
(vk−1)!

(Skj+vk−1)!

∏vk

l=1 αkjl!
)
, P̂ (hi) = 1

m if there are
m candidate SPODEs, and Skj and αkjl have the same meanings as for MML.

Maximum a Posteriori Linear Mixture of Generative Distributions
(MAPLMG) [18] constructs a SPODE ensemble that maximizes the su-
pervised posterior probability of the weights given the training data. It deter-
mines the weighing vector w 〈w1, . . . , wm〉 as w = argmaxw P̂LMG(w|D) where

P̂LMG(w|D) =
∏

〈x,y〉∈D

( Pm
i=1 wiP̂

LOO
i (y,x)P

y∈Y

Pm
i=1 wiP̂ LOO

i (y,x)

m∏
i=1

wi

)
, and P̂LOO

i (y,x) =

P̂ (xi, y)
m∏

j=1

P̂ (xj | xi, y) whose right hand side is estimated from (D − {〈x, y〉})
for hi. The maximization is a constrained nonlinear optimization problem that
can be solved by means of a sequence of unconstrained maximizations [29], each
of them solved by a Newton-like procedure such as BFGS [30].

4 Time Complexity Analysis

Assume that the number of training instances and attributes are n and m, and
number of classes is c. Let the average number of values for an attribute be v.

The training time complexity of each scheme is listed as follows:

CV FSA LE BIC MML or BMA MAPLMG
O(m2nc) O(m3nc) O(0) O(m2v2c) O(m2n(v + n

vc )) O(m2nc + Kmnc)



Note that LE does not require any additional information to be gathered at
training time and hence has no impact on training time. In practice, MML and
BMA often lead to arithmetic overflow when calculating very large exponentials
or factorials. One solution is to use the java class BigDecimal which unfortu-
nately can be very slow. This is why MML and BMA require large amount of
training time as later illustrated in Figure 3. The ‘K’ in MAPLMG’s complexity
is a large fixed number that bounds the number of iterations in the maximization
step. Since K is fixed, it does not affect the theoretical complexity. However it
can dominate the computing time when m,n and c are not large enough.

As for classification time complexity, each scheme’s dominating complex-
ity is the linear combination of SPODEs: O(m2c) that results from the O(mc)
SPODE algorithm applied over an O(m) sized ensemble.

5 Experiments

Empirical tests and observations of each selection or weighing scheme for ensem-
bling SPODEs are presented here.

5.1 Design and Results

Table 1. Statistics of 57 experimental data sets

Data Ins. Att. Data Ins. Att. Data Ins. Att.

Abalone 4177 8 Hypothyroid 3772 29 Postoperative 90 8
AE 9961 12 Ionosphere 351 34 PrimaryTumor 339 17
Annealing 898 38 IrisClassification 150 4 Promoter 106 57
Audiology 226 69 KRvsKP 3196 36 Satellite 6435 36
AutosImports85 205 25 LaborNegotiations 57 16 Segment 2310 19
BalanceScale 625 4 LED 1000 7 SickEuthyroid 3772 29
Bands 1078 36 LetterRecognition 20000 16 Sign 12546 8
BreastCancer 699 9 LiverDisorders 345 6 Sonar 208 60
Chess 551 39 LungCancer 32 56 Soybean 683 35
CMC 1473 9 Lymphography 296 18 Splice 3177 60
CreditApproval 690 15 Mfeat-mor 2000 6 Syncon 600 60
Echocardiogram 131 6 Mushroom 8124 22 Thyroid 9169 29
German 1000 20 Musk 476 166 TicTacToe 958 9
GlassIdentification 214 9 NetTalkPhoneme 5438 7 Vehicle 846 18
HeartCleveland 303 13 NewThyroid 215 5 Vowel 990 11
Hepatitis 155 19 OpticalDigits 5620 48 Waveform 5000 40
HorseColic 368 21 PageBlocks 10946 10 Wine 178 13
HouseVotes84 435 16 PenDigits 10992 16 Yeast 1484 8
Hungarian 294 13 PimaDiabetes 768 8 Zoo 101 16

A large suite of 57 benchmark data sets from the UCI machine learning repos-
itory [31], as described in Table 1, are employed to test rival schemes. All missing



values for nominal and numeric attributes in a data set are replaced with the
modes and means from the training data in order to facilitate calculating infor-
mation metrics. Numeric attributes are discretized using entropy minimization
discretization [32]. Each scheme is tested on each data set using a 10-trial 2-fold
cross validation, where 5 performance measures are recorded: training time, clas-
sification time and classification error that can be decomposed into a bias term
and a variance term [33–37]. We use Kohavi and Wolpert’s [35] definitions of
bias and variance, and estimate them using Webb’s [37] cross-validation method.

It is useful to look into bias and variance of a classifier because they each
offer a different perspective of view. Bias describes the component of error that
results from systematic error of the learning algorithm. Variance describes the
component of error that results from random variation in the training data
and from random behavior in the learning algorithm, and thus measures how
sensitive an algorithm is to changes in the training data. Moore and McCabe [38]
illustrated bias and variance through shooting arrows at a target, as reproduced
in Figure 2. We can think of the perfect classifier as the bull’s-eye on a target,
and the learned classifier as an arrow fired at the bull’s-eye. Bias and variance
describe what happens when an archer fires many arrows at the target. High bias
means that the arrows land consistently off the bull’s-eye in the same direction.
High variance means that repeated shots differ widely among themselves and
are scattered on the target. A good learning scheme, like a good archer, should
have both low bias and low variance.

(a) High bias,
low variance

(b) Low bias,
high variance

(c) High bias,
high variance

(d) Low bias,
low variance

Fig. 2. Bias and variance in shooting arrows at a target. Bias means that the archer
systematically misses the bull’s eye in the same direction. Variance means that the
arrows are scattered. (Moore and McCabe, 2002)

Statistically a win/lose/tie record (w/l/t) is calculated for each pair of com-
petitors A and B with regard to a performance measure M . The record represents
the number of data sets in which A respectively beats, loses to or ties with B
on M . A one-tailed binomial sign test can be applied to wins versus losses. If its
result is less than the critical level of 0.05, the wins against losses are statistically
significant, supporting the claim that the winner has a systematic (instead of by
chance) advantage over the loser.

Please be noted that different from our previous research, we no longer impose
a frequency threshold on SPODEs. Previously as a means to reduce classifica-



tion variance, a SPODE was considered a candidate for ensembling only if its
frequency was above 30 [22]. However, subsequent research demonstrated better
results when the minimum frequency was reduced to 1 [18]. Accordingly, the ex-
perimental results of CV and FSA can be different from the previous report [22].
AODE, a complete SPODE ensemble without any selection or weighing applied,
is also included to offer a baseline in comparing alternative schemes.

5.2 Observations and Analysis

Experimental results are summarized in Figures 3, 4 and Table 2. Empirical
observations reveal the following knowledge.
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Fig. 3. Compare rival schemes’ accuracy
and efficiency averaged on 57 data sets.
Error can be decomposed into bias and
variance. To maintain a proper scale of
the graph, the ‘train time’ bars of MML
and BMA are cut short with their true
values labeled on top.

LE, best model selection According to Table 2(a), LE significantly wins
against AODE and CV at the 0.05 critical level (w/l/t being 28/6/23 and
34/15/8 respectively). It also wins more often than not when compared with
FSA (w/l/t being 31/20/6). As shown in Figure 3, LE achieves the lowest mean
error among alternative selection methods. It is also the most efficient method
in terms of training time.

MAPLMG, best model weighing Among model weighing schemes, the
best one is MAPLMG. According to Table 2(a), it significantly wins against
AODE and every other single weighing scheme. As shown in Figure 3, MAPLMG
achieves the lowest mean error among weighing schemes. One factor that may
contribute to its low error is that MAPLMG optimizes multiple weights simul-
taneously, while others calculate the weights for individual SPODEs in isolation.



Table 2. Compare rival schemes’ win/lose/tie records with regard to classification
error, bias and variance respectively. Each entry indicates that the scheme of the row
compares against the scheme of the column. A statistically significant record (at the
0.05 critical level) is indicated in a bold face.

(a) ERROR
w/l/t AODE CV FSA LE BIC MML BMA

CV 22/26/9
FSA 27/24/6 26/15/16
LE 28/6/23 34/15/8 31/20/6
BIC 10/40/7 8/41/8 7/41/9 6/47/4
MML 10/10/37 21/22/14 21/27/9 7/31/19 39/11/7
BMA 7/46/4 6/45/6 5/47/5 4/50/3 16/29/12 8/46/3
MAPLMG 34/7/16 37/12/8 33/17/7 26/19/12 44/9/4 35/9/13 49/6/2
(b) BIAS
w/l/t AODE CV FSA LE BIC MML BMA

CV 47/4/6
FSA 48/2/7 22/16/19
LE 35/1/21 13/35/9 11/35/11
BIC 13/34/10 4/45/8 6/45/6 10/41/6
MML 15/11/31 4/46/7 4/48/5 5/35/17 35/14/8
BMA 25/25/7 6/43/8 8/44/5 12/38/7 28/20/9 22/28/7
MAPLMG 37/2/18 11/38/8 5/37/15 19/26/12 43/11/3 38/6/13 32/18/7
(c) VARIANCE
w/l/t AODE CV FSA LE BIC MML BMA

CV 3/49/5
FSA 7/44/6 30/12/15
LE 7/21/29 44/5/8 42/8/7
BIC 18/33/6 27/22/8 25/21/11 19/31/7
MML 8/17/32 47/3/7 43/7/7 21/14/22 32/17/8
BMA 6/46/5 15/34/8 10/39/8 7/46/4 10/36/11 7/45/5
MAPLMG 11/22/24 48/2/7 47/4/6 23/16/18 32/19/6 14/23/20 45/7/5

On the other hand, this optimization demands time and hence MAPLMG is
slower than BIC on training (but still faster than MML and BMA as has been
reasoned in Section 4).

AODE, best variance reduction AODE does not incur sophisticated selec-
tion or weighing. It instead simply uniformly averages every SPODE’s prob-
ability estimate. This simplicity turns out to be the best scheme in terms of
variance reduction, as shown in Figure 3. Also according to Table 2(c), AODE
always achieves lower variance than every other single scheme, most of which are
statistically significant at the critical level of 0.05. In contrast, schemes like CV
and FSA are more capable of reducing bias. However, their bias reduction is over-
shadowed by AODE’s variance reduction. As a result, they cannot significantly
outperform AODE on error reduction.



To select or to weigh The best of model selection, LE, and the best of model
weighing, MAPLMG both beat AODE at the statistical significance level of 0.05
in terms of classification error. Figure 4 graphs the relative bias, variance and
error of the three classifiers. The values on the y-axis are the outcome for LE di-
vided by that for AODE. The values of the x-axis are the outcome for MAPLMG
divided by that for AODE. Each point on the graph represents one of the 57 data
sets. Points on the left of the vertical line at MAPLMG/AODE=1 in each sub-
graph are those of which MAPLMG outperforms AODE. Points below the hori-
zontal line at LE/AODE=1 indicate that LE outperforms AODE. Points below
the diagonal line X=Y represent that MAPLMG outperforms LE. It is observed
that both LE and MAPLMG frequently reduce bias compared with AODE as
the majority of points fall within the boundaries X=1 and Y=1 in Figure 4(a).
Although AODE is better at reducing variance as shown in Figure 4(b), LE and
MAPLMG’s bias reduction dominates AODE’s variance reduction. Hence both
can significantly beat AODE on error reduction as in Figure 4(c).
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Fig. 4. LE and MAPLMG’s performance relative to AODE

Between themselves, as shown in Table 2, LE wins against MAPLMG (al-
though not significantly) on reducing bias (w/l/t being 26/19/12). MAPLMG
wins against LE (although not significantly) on reducing variance (w/l/t being
23/16/18). The end effect is that MAPLMG beats LE (although not signifi-
cantly) on reducing error (w/l/t being 26/19/12). Meanwhile, as shown in Fig-
ure 3, LE is more efficient than MAPLMG on both training and classification.

Hence, whether to use model selection or model weighing depends on the
specific requirements of a particular classification task. If one needs to maximize
accuracy, we recommend MAPLMG. If one seeks both high learning accuracy
and efficiency, we recommend LE. If one needs to minimize variance while ob-
taining a reasonable accuracy, we recommend AODE.

6 Conclusion

We have studied a number of representative model selection and model weighing
schemes for SPODE ensemble learning. We have presented the definition, ratio-
nale and time complexity of each scheme. We have conducted comprehensive
experiments across 57 UCI benchmark data sets to test each scheme’s effect on



SPODE ensembles’ learning accuracy and efficiency. LE delivers efficient learn-
ing and significantly higher accuracy than AODE and thus is identified as the
method of choice for model selection. MAPLMG delivers significantly higher
accuracy than AODE and thus is identified as the method of choice for model
weighing.
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