
The Problem of Missing Values inDecision Tree GraftingGeo�rey I. WebbSchool of Computing and MathematicsDeakin UniversityGeelong, Vic, 3217, Australia.Abstract. Decision tree grafting adds nodes to inferred decision trees.Previous research has demonstrated that appropriate grafting techniquescan improve predictive accuracy across a wide cross-selection of domains.However, previous decision tree grafting systems are demonstrated tohave a serious de�ciency for some data sets containing missing values.This problem arises due to the method for handling missing values em-ployed by C4.5, in which the grafting systems have been embedded. Thispaper provides an explanation of and solution to the problem. Experi-mental evidence is presented of the e�cacy of this solution.Keywords: Grafting, Decision Tree Learning; Missing Values1 IntroductionGrafting is a technique for postprocessing inferred decision trees that has beendemonstrated to increase predictive accuracy across a wide cross-selection oflearning tasks (Webb, 1997). Grafting traverses the decision tree identifyingnew branches that can be added pro�tably to the tree. The opportunity to iden-tify useful additional branches arises due to the top-down divide-and-conquerstrategies used in conventional decision tree induction algorithms. When eval-uating potential new branches, these algorithms do not consider evidence fromoutside the region r of the instance space covered by the node currently beingprocessed. By considering evidence about sub-regions of r provided by examplesoutside r, grafting has been demonstrated to identify additional branches thatsigni�cantly increase predictive accuracy. Indeed, over a wide cross-selection oflearning tasks, grafting has been demonstrated to increase predictive accuracyas frequently as pruning (Webb, 1997). Further, pruning and grafting are com-plementary. Pruning then grafting outperforms either pruning or grafting alone(Webb, 1997). (Grafting then pruning is inappropriate as pruning will removeall nodes added by grafting as these new nodes will have little support in termsof the local evidence that pruning can consider.)This paper addresses a problem encountered by previous grafting systems(Webb, 1996, 1997) when they are applied to some data sets containing missingvalues. Put simply, these systems, which are implemented as extensions to C4.5(Quinlan, 1993), can add branches to a node which cause items classi�ed by that
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branch, that have missing values for the attribute tested at the branch, to bepassed down the new branch, rather than defaulting to the branch associatedwith the original node as intended.For data sets with many missing values, this can result in large increases inpredictive error. A simple solution to this problem, investigated in this paper, isto prevent grafting on attributes for which there are missing values at the currentnode. This measure is shown to prevent the extreme increases in predictiveerror previously identi�ed without general negative side-e�ects. It also o�ers theadditional bene�t of substantially reducing the size of the inferred trees.2 Decision Tree GraftingMachine learning can be viewed as a process of partitioning an instance space.The instance space is the multi-dimensional geometric space formed by project-ing axes for each attribute in the learning task. Top-down decision tree inductionalgorithms, such as C4.5 (Quinlan, 1993) and CART (Breiman, Friedman, Ol-shen, & Stone, 1984), recursively partition the instance space until considerationof the training examples within a partition fails to support further partitioning.Each leaf of the inferred decision tree corresponds to a partition. Every itemthat falls within a partition is classi�ed as belonging to the class with which thecorresponding leaf is labeled (the class that dominates the partition within thetraining set).During learning, when considering potential new partitions within an existingpartition p, only training examples within p are considered. As a consequence,areas of the instance space that are not occupied by any training examples areallocated to partitions purely as a side-e�ect of forming partitions for areas thatare occupied by training examples. This can be undesirable, as illustrated by anexample drawn from Webb (1997), presented in Figs. 1 and 2. Figure 1 presentsa simple two attribute learning task projected onto a two dimensional instancespace. Objects belong to three classes, �, �, and �. The reader is invited toconsider the most likely class for an unclassi�ed object, labeled ?, with attributevalues A = 6; B = 1. Informal surveys suggest that the most common intuition isthat such an object has highest probability of belonging to class �. In this contextit is illuminating to consider the partitions that correspond to the decision treeformed by C4.5 for this learning task. This is presented in Fig. 2. It can beseen that C4.5 forms a partition that assigns class � to the unclassi�ed object.This occurs because, once it has su�ciently partitioned the instance space toadequately accommodate all objects in the training set, no consideration is givento areas of the instance space, such as that in question, that are not occupiedby training examples.Decision tree grafting traverses an inferred decision tree looking for areas ofthe instance space such as this, that are not occupied by training examples (orare occupied only by training examples misclassi�ed by the current partition). Itexplores the ancestors of a leaf at which such areas are found, seeking alternativecuts that could have been imposed at those ancestors that appear likely to
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?Fig. 2. Example instance space as partitioned by C4.5provide better predictive accuracy in that region than the leaf in question. Suchcuts are imposed on the tree at the leaf. Extensive comparison (Webb, 1996,1997) has shown that, in general, grafting improves the predictive accuracy ofboth pruned and unpruned decision trees learned by C4.5.It has been hypothesised (Webb, 1997) that grafting has a similar e�ect tolearning ensembles of classi�ers (Ali, Brunk, & Pazzani, 1994; Breiman, 1996;Dietterich & Bakiri, 1994; Freund & Schapire, 1995; Kwok & Carter, 1990; Oliver& Hand, 1995; Nock & Gascuel, 1995; Schapire, 1990; Wolpert, 1992), in thatboth consider more evidence about the best classi�cations for objects in regionsof the instance space that are poorly represented in the training data. Bothaproaches form more complex partitions of the instance space than conventionallearning. However, while these partitions are implicit in an ensemble, formed byresolution of con
icting predictions from each classi�er, they are explicit withgrafting, which directly represents the partitions with a single decision tree. Thiscan be expected to make the classi�ers formed by grafting more readily com-



prehensible than those formed using ensembles of classi�ers. On the other hand,however, current grafting techniques are not as e�ective at reducing predictionerror as good ensemble induction techniques.3 Grafting with Missing ValuesThis paper addresses a problem that was identi�ed when previous grafting tech-niques were extended to accommodate discrete valued attributes. For the an-nealing data set, grafting unpruned trees increased the average predictive errorfrom a cross-validation experiment from 5.4% to 84.6%. For pruned trees the av-erage predictive error was increased from 8.0% to 44.1%. In this data set everyobject has values missing for at least some attributes and for most objects moreattribute values are missing than are known.To understand how such missing values can a�ect grafting to C4.5 trees,it is necessary to understand how C4.5 handles missing values. There are twodistinct stages at which missing values must be accommodated, during induc-tion and during application of the inferred tree for classi�cation. As grafting isimplemented as a postprocessor that is applied after the initial decision tree isinferred the manner in which missing values are handled by C4.5 during induc-tion is not of signi�cance here. How they are handled during classi�cation canhave profound impact, however, as this determines how the structures createdby grafting are subsequently interpreted.During classi�cation, objects with missing values on an attribute are passeddown all branches below a test on that attribute. All objects are assigned aninitial weight of 1. When a missing value causes an object to be passed downmultiple branches, it is passed down each branch with a diminished weight. Theweight of an object with a missing value for attribute a when passed down abranch b below a test on a is multiplied by m=n when m is the number oftraining objects with known values for a that pass down b and n is the numberof training objects with known values for a at the node from which b descends.All leaves that are reached then vote for the class to be assigned to the object,the vote of a leaf equaling the weight of the object when it reaches the leaf.This process can cause a number of pitfalls for decision tree grafting. Graftingis predicated on the principle that unless there is evidence that an alternativeclass should be assigned to an object, that the class assigned by the originaldecision tree should be preferred. Thus, the default action at any grafted branchshould be to pass the object toward the original leaf. However, consider the e�ectif a test on an attribute a is grafted onto a leaf l for class c at which all trainingobjects belonging to c have missing values for a. If there are substantial numbersof such objects, it is likely that when classifying future objects, more such willbe encountered. However, all such future objects will be misclassi�ed, as thetechnique for classifying objects with missing values will strongly weight theseobjects towards the branches for which there are objects with known values,none of which will lead to the original leaf! This will happen even if there are



large numbers of training objects for class c that reach l, so long as none haveknown values for a. This is clearly undesirable.Two potential solutions to this problem that might be considered are:1. modifying C4.5's method of handling missing values for grafted branches sothat the greatest weight is directed toward the leaf for the original class; and2. prohibiting grafting on an attribute a at leaf l for class c if the number oftraining objects with known values for a for class c at l is not greater thanthe number of all other classes.However, neither of these measures will solve the problem as it is possible thatthere will be many attributes with missing values, and that even if each branchgives greatest weighting on the path toward the original leaf, the gradual diminu-tion of weight over many such branches may eventually lead to reclassi�cationof an object. A further dimension is added to the problem when it is consideredthat an object being classi�ed might have missing values for attributes tested atancestors of the leaf in question, so that diminution of the weight assigned to itat the current leaf may result in reclassi�cation (due to the relative numbers ofvotes for each class from other branches of the tree) even if the change in weightat the leaf in question is relatively small.A simple solution to this problem is to prohibit grafting at a leaf l of a cuton an attribute a if any training object that reaches l has a missing value for a.This:1. prevents the direct problem of undue weight being assigned to grafted branches;and2. reduces the likelihood of objects with missing values having their weightsadversely diminished, by reducing the likelihood of such objects being en-countered during classi�cation.Applying this constraint to the C4.5x grafting algorithm reduced predictiveerror on the annealing data set from 84.6% to 5.5% for unpruned trees andfrom 44.1% to 7.5% for pruned trees, suggesting that it has provided an e�ectivesolution to the identi�ed problem. Section 5 evaluates the e�ect of this measureon a wide range of learning tasks from the UCI Repository of Machine LearningDatabases (Merz & Murphy, 1998). Before presenting this evaluation, however,it is necessary to describe the implementation of grafting that the new measureis embedded within. This is done in the next section.4 C4.5x3The problem of missing values was �rst identi�ed during the extension of theC4.5x (Webb, 1997) grafting system to perform grafting on discrete valued at-tributes. Previous versions of C4.5x (Webb, 1996, 1997) had performed graftingonly on continuous attributes.C4.5x acts as a postprocessor for C4.5 decision trees. It traverses the inferreddecision tree. At each leaf l, it explores ancestors of l, looking for tests that



could have been imposed at those ancestors that project across the partition ofthe instance space for l, and for which the available evidence suggests that theexpected accuracy within that projection for a speci�c classi�cation is higherthan the expected accuracy within the existing leaf. All such tests are graftedonto the existing node in order from highest expected accuracy to lowest.The expected accuracy for a test is evaluated using a Laplacian measure(Niblett & Bratko, 1986). The expected accuracy equalsm+ 1n+ 2 (1)where m is the number of training objects belonging to the speci�ed class thatpass a test and n is the total number of training objects that pass the test.This measure favours tests with high resubstitution accuracy over those withlow resubstitution accuracy and also favours tests supported by many trainingobjects over those for which few training objects provide support.As well as requiring a higher accuracy estimate, a new test is only expectedto produce higher accuracy than the existing leaf if a binomial sign test revealsthat it is statistically unlikely that the class distribution for the objects used asevidence for imposing the test would have been obtained if the underlying classdistribution re
ected the estimated error rate for the original leaf. A signi�cancelevel of 0.05 is used for the purposes of this test.For continuous attributes, tests of the form a � v or a > v are considered,for all values of attribute a at the ancestor node that could reach the targetleaf l, with the constraint that no such test may reclassify a training object thatis correctly classi�ed at l. For discrete attributes, tests of the form a = v areconsidered. Such tests are not considered if an ancestor of l has a test on a asin this case only a single value of a may reach l and hence a test on a couldnot form a new partition of non-zero volume. (It is assumed that grafting willbe applied in the context of trees learned without subseting. It would, however,be straight forward to extend the system to accommodate such tests in whichcase only values for the attribute that can reach l should be considered.) Thealternative branches associated with grafting such single value tests are formedusing C4.5's subseting facility.The resulting algorithm is presented in Appendix A.5 EvaluationCross-validation experiments were performed on 18 data sets representing a widecross-selection of those in the UCI repository that contain missing values. Thesedata sets are presented in Table 1. This table lists the numbers of cases, classes,continuous attributes, and discrete attributes, as well as the percentage of at-tribute values that are missing.Ten 10-fold cross validation experiments were performed for each data set.Each 10-fold cross validation experiment involved dividing a data set into 10partitions of as near as possible to equal size. For each partition, each treatment



Table 1. Description of data setsName Cases Classes Contin. Discr. % Unknownannealing 898 6 6 32 65audio 226 23 | 69 2autos 205 7 14 10 1breast-slov 286 2 | 9 < 1breast-wisc 699 2 9 | < 1cleveland-hd 303 2 6 7 < 1crx 690 2 6 9 1dis 3772 2 7 22 6echocardiogram 74 2 5 1 5hepatitis 155 2 6 13 6horse-colic 368 2 8 13 25hungarian-hd 294 2 6 7 20hypo 3772 4 7 22 6labor-neg 57 2 8 8 36mushroom 8124 2 | 22 1primary tumor 339 22 | 17 4sick 3772 2 7 22 6soybean large 683 19 | 35 3was applied to learn a decision tree from the 9 remaining partitions. Each ofthese trees was then evaluated by application to the selected partition.For each of the ten such experiments run for each data set, the data wasrandomly partitioned into di�erent partitions. Results are presented in the formof mean values across the 100 runs for a data set resulting from the ten cross-validation experiments each comprising ten runs.Table 2 presents the mean error for each data set. For pruned trees, prohibit-ing grafting on attributes with unknown values increases error for 4 domains anddecreases it for 7 domains. A binomial sign test reveals that the probability ofobtaining such a result by chance is 0.274, which does not enable us to concludethat this measure provides a general tendency to decrease error for pruned trees.For unpruned trees, prohibiting grafting on attributes with unknown values in-creases error for 4 data sets and decreases error for 10. A binomial sign testreveals that the probability of obtaining such an outcome by chance is 0.090which is also not signi�cant at the 0.05 level. However, given that the measuresolves the initial problem (large increases in error resulting from grafting on un-known values), and, while not providing a clear general advantage over a widevariety of domains, certainly does not provide a general disadvantage, prohibit-ing grafting on attributes with unknown values appears desirable. It should alsobe noted that with only 18 data sets available for comparison, the power of thetest statistic is low, meaning that the failure to obtain a signi�cant result pro-vides little evidence that there is not indeed a general underlying advantage to



Table 2. Summary of mean percentage error ratesPruned TreesUnpruned TreesNo Unk UnkNo Unk Unkannealing 7.5 44.1 5.4 84.6audio 22.9 22.9 23.3 23.2autos 18.3 18.7 16.6 16.9breast-slov 26.8 26.8 30.2 30.3breast-wisc 5.3 5.3 5.1 5.2cleveland-hd 22.4 22.4 22.5 22.5crx 14.4 14.7 16.0 16.3dis 1.1 1.1 1.2 1.2echocardiogram 30.7 30.6 28.4 28.7hepatitis 18.4 18.6 18.2 19.0horse-colic 15.5 16.4 18.3 19.3hungarian-hd 20.6 20.5 22.0 21.6hypo 0.5 0.6 0.6 0.6labor-neg 21.0 20.5 20.8 20.5mushroom 0.0 0.0 0.0 0.0primary tumor 59.0 58.6 58.3 58.4sick 1.4 1.4 1.5 1.4soybean large 8.4 12.0 8.8 13.3Win-loss summary 7/4 10/4Win-loss p 0.274 0.090the new technique.A further issue that is relevant in some contexts is the relative complexity oftwo inferred classi�ers. This is particularly an issue, when the inferred classi�er isto be subject to human scrutiny. Table 3 presents the numbers of nodes producedby each technique.The unknown values constraint limits the number of grafts that can be per-formed. Thus, it can never increase the complexity of a tree, only decrease it.It can be seen that some decrease in average tree size has been achieved forevery data set. For some data sets this decrease is arguably negligible (audio,autos, breast-slov, breast-wisc, cleveland-hd, dis, echocardiogram, mushroom,and sick). For each of the remaining eight data sets, however, the decrease inthe number of nodes exceeds 10%. For annealing, the average size of the prunedtrees is decreased by 73% and for horse-colic it is reduced by 83%. This resultstrengthens the case for preferring the prohibition of grafting on attributes withunknown values.6 ConclusionsGrafting has been demonstrated to increase predictive accuracy across a wide va-riety of learning tasks. However, the interaction of C4.5's mechanisms for missing



Table 3. Summary of mean number of nodes per treePruned Trees Unpruned TreesNo Unk UnkNo Unk Unkannealing 407.8 1527.2 684.5 2746.9audio 91.8 94.3 138.8 145.0autos 921.0 941.4 1206.8 1239.8breast-slov 29.4 29.6 324.8 326.0breast-wisc 123.1 123.8 245.5 249.3cleveland-hd 184.3 184.6 352.3 352.8crx 238.8 425.2 1171.3 1481.8dis 180.3 183.1 730.9 744.6echocardiogram 8.2 8.8 11.1 12.3hepatitis 32.3 50.3 62.8 99.7horse-colic 15.7 92.6 191.7 1680.8hungarian-hd 23.9 27.4 158.6 190.8hypo 305.6 341.7 436.4 494.2labor-neg 10.6 19.0 26.7 53.3mushroom 994.8 1014.3 994.8 1014.3primary tumor 129.2 158.2 200.9 242.3sick 595.8 626.6 846.7 898.1soybean large 711.9 1243.5 1384.8 3448.1Win-loss summary 18/0 18/0Win-loss p 0.000 0.000

values with grafted branches led to extreme increases in error for a small numberof domains with large numbers of missing values. This research has shown thatthe simple expedient of prohibiting grafting on attributes for which unknownvalues are present at a node overcomes this problem. This prohibition greatlyreduces error on the domain for which the problem was initially diagnosed, an-nealing. It also reduces error in six other domains when grafting on pruned treesand ten other domains when grafting on unpruned trees. Small increases in errorare evident only for four domains for each type of tree. A further bene�t is ageneral decrease in the size of the inferred trees, in some cases by more than80%. Given these bene�ts, a general prohibition against grafting on attributeswith unknown values at a node appears warranted.



A AlgorithmLet cases(n) denote the set of all training examples that can reach node n, unlessthere are no such examples in which case cases(n) shall denote the set of all trainingexamples that can reach the parent of n.Let value(a; x) denote the value of attribute a for training example x.Let pos(X; c) denote the number of objects of class c in the set of training examplesX.Let class(x) denote the class of object x.Let Laplace(X; c) = pos(X;c)+1jXj+2 where X is a set of training examples, jXj is the numberof training examples and c is a class.Let upperlim(n; a) denote the minimum value of a cut c on continuous attribute a foran ancestor node x of n with respect to which n lies below the a � c branch of x.If there is no such cut, upperlim(n; a) = 1. This determines an upper bound on thevalues for a that may reach n.Let lowerlim(n; a) denote the maximum value of a cut c on continuous attribute afor an ancestor node x of n with respect to which n lies below the a > c branch of x.If there is no such cut, lowerlim(n; a) = �1. This determines a lower bound on thevalues for a that may reach n.Let prob(x; n; p) be the probability of obtaining x or more positive objects in a randomselection of n objects if the probability of selecting a positive object is p.To post-process leaf l dominated by class c1. Initialize to fg a set of tuples t representing potential tests.2. For each continuous attribute a(a) Find values ofn: n is an ancestor of lv: 9x: x 2 cases(n) & v = value(a; x) & v � min(value(a; y): y 2 cases(l) &class(y) = c) & v > lowerlim(l; a)k: k is a classthat maximize L0 = Laplace(fx: x 2 cases(n) & value(a; x) � v & value(a; x) >lowerlim(l; a)g; k).(b) Add to t the tuple hn; a; v; k;L0;�i(c) Find values ofn: n is an ancestor of lv: 9x: x 2 cases(n) & v = value(a; x) & v > max(value(a; y): y 2 cases(l) &class(y) = c) & v � upperlim(l; a)k: k is a classthat maximize L0 = Laplace(fx: x 2 cases(n) & value(a; x) > v & value(a; x) �upperlim(l; a)g; k).(d) Add to t the tuple hn; a; v; k;L0; >i3. For each discrete attribute a for which there is no test at an ancestor of l(a) Find values ofn: n is an ancestor of lv: v is a value for ak: k is a classthat maximize L0 = Laplace(fx: x 2 cases(n) & value(a; x) = vg; k).(b) Add to t the tuple hn; a; v; k;L0;=i



4. Remove from t all tuples hn; a; v; k;L; xi such that L � Laplace(cases(l); c) orprob(x; n; Laplace(cases(l); c)) � 0:05.5. Remove from t all tuples hn; a; v; c;L; xi such that there is no tuple hn0; a0; v0; k0;L0; x0isuch that k0 6= c & L0 < L.6. For each hn; a; v; k;L; xi in t ordered on L from highest to lowest valueIf x is � then(a) replace l with a node n with the test a � v.(b) set the � branch for n to lead to a leaf for class k.(c) set the > branch for n to lead to l.else (x must be >)(a) replace l with a node n with the test a � v.(b) set the > branch for n to lead to a leaf for class k.(c) set the � branch for n to lead to l.ReferencesAli, K., Brunk, C., & Pazzani, M. (1994). On learning multiple descriptions ofa concept. In Proceedings of Tools with Arti�cial Intelligence, pp. 476{483New Orleans, LA.Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123{140.Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classi�cationand Regression Trees. Wadsworth International, Belmont, Ca.Dietterich, T. G., & Bakiri, G. (1994). Solving multiclass learning problems viaerror-correcting output codes. Journal of Arti�cial Intelligence Research,2, 263{286.Freund, Y., & Schapire, R. E. (1995). A decision-theoretic generalization of on-line learning and an application to boosting. In Proceedings of the SecondEuropean Conference on Machine Learning, pp. 23{37. Springer-Verlag.Kwok, S. W., & Carter, C. (1990). Multiple decision trees. In Shachter, R. D.,Levitt, T. S., Kanal, L. N., & Lemmer, J. F. (Eds.), Uncertainty in Arti�-cial Intelligence 4, pp. 327{335. North Holland, Amsterdam.Merz, C. J., & Murphy, P. M. (1998). UCI repository of machine learningdatabases. [Machine-readable data repository]. University of California,Department of Information and Computer Science, Irvine, CA.Niblett, T., & Bratko, I. (1986). Learning decision rules in noisy domains. InBramer, M. A. (Ed.), Research and Development in Expert Systems III,pp. 25{34. Cambridge University Press, Cambridge.Nock, R., & Gascuel, O. (1995). On learning decision committees. In Proceedingsof the Twelfth International Conference on Machine Learning, pp. 413{420Taho City, Ca. Morgan Kaufmann.Oliver, J. J., & Hand, D. J. (1995). On pruning and averaging decision trees. InProceedings of the Twelfth International Conference on Machine Learning,pp. 430{437 Taho City, Ca. Morgan Kaufmann.Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kauf-mann, San Mateo, CA.



Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5,197{227.Webb, G. I. (1996). Further experimental evidence against the utility of Occam'srazor. Journal of Arti�cial Intelligence Research, 4, 397{417.Webb, G. I. (1997). Decision tree grafting. In IJCAI-97: Fifteenth InternationalJoint Conference on Arti�cial Intelligence, pp. 846{851 Nagoya, Japan.Morgan Kaufmann.Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5, 241{259.

This article was processed using the LATEX macro package with LLNCS style




