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Abstract

This paper presents a new class of pruning rule
for unordered search. Previous pruning rules for
unordered search identify operators that should not
be applied in order to prune nodes reached via those
operators. In contrast, the new pruning rules iden-
tify operators that should be applied and prune nodes
that are not reached via those operators. Specific
pruning rules employing both these approaches are
identified for classification learning. Experimen-
tal results demonstrate that application of the new
pruning rules can reduce by more than 60% the
number of states from the search space that are
considered during classification learning.

Keywords search, unordered search, pruning rules,
machine learning

1 Introduction

Unordered search is search in which the order in
which the search operators are applied does not
affect the outcome. Subset selection, a special case
of unordered search where each search operator can
be applied once only, has received extensive study
[7, 9, 14, 19]. Pruning is critical to successful search
in such spaces. Previous research has examined
pruning rules that identify search operators that
cannot lead to solutions and exclude those oper-
ators from consideration. These are referred to
as exclusive pruning rules. This paper presents a
further class of admissible pruning rules: inclusive
pruning rules. These rules identify search operators
that must be applied to reach a solution and prune
paths that do not include those operators.

Unordered search is applicable to many classifi-
cation learning tasks, notably, search for conjunc-
tions of constraints that identify a class or part
of a class. For this search problem, search usu-
ally starts with a general classifier and each search
operator corresponds to the conjunction of a con-
straint to the classifier under construction [5, 11].
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Such search is unordered as the order in which con-
straints are added to a classifier is not significant.

In recent years there has been an increase in
interest in the development of admissible search
strategies for such classification learning tasks [6,
14, 15, 16, 18]. A search algorithm is admissible if
and only if it is guaranteed to find the nominated
search goal. The use of admissible search has much
to offer classification learning as a scientific disci-
pline. Most notably, the use of admissible search
makes it possible to unequivocally manipulate and
study learning biases. Results from experiments
that seek to study alternative learning biases but
employ heuristic search will always be equivocal as
it will never be possible to precisely identify and
quantify the learning biases introduced through the
use of the search heuristic. Indeed, results of previ-
ous experimentation [18] suggests that at least one
heuristic search algorithm (CN2 [2]) introduces an
unidentified bias that has positive effect on clas-
sification accuracy. Previous work [18] has also
demonstrated that admissible search can be more
efficient than common heuristic search techniques.

Crucial to the efficiency of admissible search
is the use of appropriate pruning rules. Only by
pruning the majority of the search space is it possi-
ble to systematically search the large search spaces
involved in many machine learning problems. Ap-
propriate pruning can also greatly increase the effi-
ciency of heuristic search in classification learning.

The new class of admissible pruning rules, in-
clusive pruning, is evaluated with respect to search
in classification learning. A taxonomy of admissible
pruning rules for unordered search is developed and
seven admissible pruning rules for search in classi-
fication learning are described. Experimental eval-
uation of the relative effectiveness of selected rules
is provided for appropriate classification learning
tasks from the UCI machine learning repository [8].

2 Formal framework

This paper restricts itself to consideration of search
in the context of propositional classification learn-
ing. While many of the principles examined have
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wider application, the implications are not made
explicit.

It is assumed that the search seeks to uncover
an expression in the form of a conjunction of propo-
sitions that maximizes a preference measure with
respect to a training set. An AQ-like [5] covering
algorithm can be used to form disjunctive proposi-
tional classifiers through repeated search for such
conjunctive expressions [18].

Each state in the search space corresponds to a
conjunction of propositions. Each search operator
has the effect of creating a new state by conjoin-
ing a specific proposition to the expression for the
original state. The state resulting from application
of operator o to state s is denoted by s ∧ o.

Search is guided by consideration of a set of
training examples. These examples are divided into
a set of positive examples P and a set of negative
examples N .

For any state s, pos(s) denotes the set of posi-
tive examples and neg(s) denotes the set of nega-
tive examples covered by the expression for s. The
initial state is denoted by IS. IS is the most gen-
eral possible expression. pos(IS) = P . neg(IS) =
N . The state at a node n in the search tree is
denoted by state(n).

For any operator o, pos(o) and neg(o) are used
as abbreviations for pos(IS ∧ o) and neg(IS ∧ o),
respectively.

For a set x, |x| will denote the cardinality of x.
The term search space below node n will denote

all states that can be reached from n by application
of any combination of operators active at node n.

For any state s and operator o , pos(s ∧ o) =
pos(s) ∩ pos(o) and neg(s ∧ o) = neg(s) ∩ neg(o).
It follows that multiple applicatons of a single op-
erator have the same effect as a single application
of that operator (s ∧ o ∧ o = s ∧ o), at least with
regard to the positive and negative cover of the
resulting states. As the positive and negative cover
are the only factors considered in the preference
functions that will be employed, multiple operator
applications are not considered during the search
as they cannot improve the value of a state.

It also follows that the order in which operators
are applied does not alter the value of the resulting
state. That is, for any state s and operators i and
o, s ∧ i ∧ o = s ∧ o ∧ i, at least with respect to
value. In consequence, each combination of oper-
ator applications need be considered once only. A
search task for which the order in which operators
are applied is not significant is called an unordered
search task.

As each operator can be applied once only and
order is not significant, this search task is equiva-
lent to a subset selection problem—select the sub-
set x of the available operators for which the appli-

cation of the operators in x to IS results in a state
with maximal value.

The search problem requires optimization search.
A solution is any state that maximizes a value func-
tion called the preference function.

Two preference functions will be examined within
this paper. The maximum consistent preference
function allows only expressions that do not cover
any negative cases. Of these expressions it favors
the expression that covers the most positive cases.
It can be expressed as

if |neg(s)| > 0 then value(s) = −|neg(s)|
else value(s) = |pos(s)|.

where s is the state being evaluated.
The Laplace preference function [1] trades-off

accuracy against generality. It is defined as

value =
|pos(s)|+ 1

|pos(s)|+ |neg(s)|+ no of classes

The exact pruning rules that may be employed
for a given search problem will depend upon the
available means of identifying solutions and of iden-
tifying whether the application of a given operator
below a given node can lead to a solution.

The current discussion assumes a context of op-
timization search. All states have values. The value
of state s is denoted by value(s). For convenience,
the value of the state at node n will also be denoted
by value(n). All states with maximum values from
the search space are acceptable solutions.

We also assume the ability to identify an op-
timistic value for any node. An optimistic value
optimistic(n) of node n is a value that is no higher
than the maximum value of a state in the search
space below n.

3 Admissible search strategies for un-
ordered search

The OPUSo search algorithm [18] has demonstrated
the capacity to efficiently search many common
classification learning search spaces.

Prior to OPUSo, fixed-order search was used
exclusively for admissible search in classification
learning [14, 15, 16, 17]. Fixed-order search orders
the search space in advance so that the proportion
of the search space under each node is predeter-
mined. In contrast, OPUSo can reorder the search
space to optimize the proportion of the search space
under each node. OPUSo outperforms fixed-order
search by optimizing the proportion of the search
space pruned by each pruning action without any
significant computational or storage overhead [19].

OPUSo operates by maintaining and manipulat-
ing at each node in the search tree a set of operators
that may be applied below that node. These oper-
ators are called the active operators at the node.



At any time during the search, there will be
a set of states EXAMINED that have been en-
countered. At any time t, BEST , denotes the
first state encountered during the search to time
t that satisfies the constraint that for no state s in
EXAMINED, value(s) > value(BEST ).

The Cover machine learning system utilizes the
OPUSo search algorithm within an AQ-like cover-
ing algorithm. In the default mode that is em-
ployed in the experimentation below, rule sets for
multiple classes are learnt by considering each class
in turn. As each class is considered it is treated
as the positive class and the union of all other
classes forms the negative class. The propositions
considered take the form A 6= v, where A is an
attribute and v is one of its allowable values. Un-
known is treated as a distinct attribute value. Con-
junctions of such propositions have equivalent ex-
pressive power to internal disjunctive expressions.
The system currently supports only induction from
categorical attribute-value data.

4 Inclusive and exclusive pruning rules

Previous unordered search algorithms [9, 12, 14, 15,
16, 18] have pruned the search tree by considering
at each node the effect of applying each of the
available operators. If one of the operators can-
not lead to a solution, all potential solutions below
the current node that include that operator can be
pruned from the search tree (although OPUSo and
Feature Subset Selection are the only algorithms
that actually prune all these nodes). This style of
pruning shall be called exclusive pruning. Opera-
tors that can be excluded from consideration are
pruned.

In the context of unordered search with each
operator applied at most once, the exclusion of each
operator from the search tree below a node halves
that search tree as exactly half of the original search
tree is reached via application of each operator.

This paper introduces another type of prun-
ing, inclusive pruning. This approach identifies all
search operators o such that if there is a solution
below the current node then at least one such so-
lution can be reached by application of o. It is
possible to prune from the search tree all states
that are not reached via application of any such
operator o.

For unordered search with each operator applied
at most once, each inclusive pruning action halves
the search space below a node in the same manner
as exclusive pruning, as exactly half of the search
space is not reached via application of each opera-
tor.

Inclusive pruning is not restricted to unordered
search during which each operator can be applied
at most once. It is applicable to any unordered
search.

Inclusive pruning cannot be trivially recast in
terms of exclusive pruning because excluding states
that are not reached by an operator o will not in
general be equivalent to excluding all states that
are reached by any identifiable set of other opera-
tors.

Exclusive pruning has the effect of decreasing
the set of operators active at the current search
node through deletion of the pruned operator.

Inclusive pruning with operator o to be included
has the effect of replacing the state s for the current
search node n with the state s ∧ o. Only o is
removed from the set of the operators active at n.

The next four sections present a taxonomy of
four basic categories of exclusive and inclusive prun-
ing rule. Example rules of each category are defined
for classification learning.

5 Obstructive operator pruning

An operator o is obstructive at node n if it must be
the case that no solution can be reached through
application of o below n. The search space reached
through application of an obstructive operator can
be pruned as doing so cannot prune any solutions
from the search tree. Obstructive operator pruning
is the form of exclusive pruning that can be applied
to any unordered search task.

A version of optimistic pruning [10] can be de-
fined as an obstructive operator pruning rule. This
version of optimistic pruning enables the pruning
from the search space below node n of all states
reached via application of operator o if optimistic(state(n)∧
o) < value(BEST ). If optimistic(state(n) ∧ o) <
value(BEST ), then it follows that no state that
can be reached via application of o from node n can
have higher value than the best value encountered
so far. It follows that no state in this area of the
search tree can be a solution.

This version of optimistic pruning can be de-
fined as follows:

Obstructive optimistic pruning
For any node n and operator o if optimistic(state(n)∧
o) < value(BEST ) then prune all nodes reached
via application of o from the search tree below
n.

The effectiveness of this rule will depend on the
precision of the optimistic value function.

For the preference functions defined above, the
value of a node depends solely on how many pos-
itive and negative cases from the training set the
expression at the node covers. Further, decreasing
negative cover while holding positive cover constant
increases value as does increasing positive cover
while holding negative cover constant. As each
search operator makes the expression at a node
more specific, negative and positive cover can only
decrease in the search space below a node. In this
context, a simple optimistic evaluation function is



obtained by determining the value of a node with
the same positive cover as the current node but
with a negative cover of zero. No node in the search
tree below the current node can exceed this value.

For OPUSo search, a more precise optimistic
evaluation can be obtained by determining the min-
imum negative cover of any state in the search tree
below node n. The state a reached by applying to
state(n) all operators active at n must be the most
specific state in the search tree below n and so must
have the minimum negative cover. It follows that
no state in the search tree below n can exceed the
value of a state that covers all of the positive cases
covered by state(n) and all of the negative cases
covered by a.

The evaluation of optimistic pruning, below, em-
ploys this latter optimistic evaluation function.

6 Ineffectual operator pruning

An operator o is ineffectual at node n if it must be
the case that if a solution can be reached through
application of o below node n then there must also
exist another solution below n that can be reached
without application of o. Portions of the search
space reached through application of an ineffectual
operator can be pruned so long as only one solution
is sought, as ineffectual operator pruning cannot
prune all solutions from the search tree. It cannot,
however, be applied if all solutions are sought, as
it may result in some solutions being pruned from
the search tree. Ineffectual operator pruning is a
form of exclusive pruning.

For the preference functions employed in this
research, any operator that does not reduce the
negative cover of a state is ineffective [18] This
can be justified as follows. Consider the applica-
tion of operator o at node n. If neg(state(n)) =
neg(state(n) ∧ o), then for any set of operators a
such that state(n)∧o∧a (the result of applying all
operators in a to state(n) ∧ o) is a solution, there
must be a state state(n)∧a (the result of applying
all operators in a to state(n)) that covers the same
cases as state(n) ∧ o ∧ a. It must cover the same
negative cases because operator o cannot reduce
the negative cover of a specialization of state(n). It
must cover the same positive cases. This is because,
being a generalization of state(n) ∧ o ∧ a it cannot
cover fewer cases and, given the preference func-
tions and that it covers the same negative cases,
state(n)∧o∧a could not be a solution if state(n)∧a
covered more positive cases.

From these considerations it is possible to derive
the negative cover neutral pruning rule.

Negative cover neutral pruning
For any node n and operator o, if neg(state(n)) =
neg(state(n) ∧ o) then prune all potential so-
lutions reached via application of o from the
search tree below n.

For the maximum consistent and Laplace pref-
erence functions an operator o is also ineffective
at node n if there is another operator a active at
n such that neg(state(n) ∧ a) ⊆ neg(state(n) ∧ o)
and pos(state(n) ∧ a) ⊇ pos(state(n) ∧ o). In this
case, if there is a solution obtained via application
of o and a below n then o must be redundant in
the solution as its inclusion cannot decrease the
negative cover of the resulting state as it cannot
exclude any negative cases not also excluded by a.
For any solution reached via o but not a there must
be another solution obtained by substituting a for
o, as the substitution of a for o will always result
in a state with equal or lower negative cover and
equal or higher positive cover.

From these considerations it is possible to derive
the relative cover pruning rule.

Relative cover pruning
For any node n and operator o if there ex-
ists another operator a active at n such that
neg(state(n)∧a) ⊆ neg(state(n)∧o) and pos(state(n)∧
a) ⊇ pos(state(n)∧ o) then prune all potential
solutions reached via application of o from the
search tree below n.

Another form of ineffectual operator pruning
can be defined as a variant of optimistic pruning. If
the optimistic value of the state reached via appli-
cation of operator o at node n is equal to the value
of b, the highest valued state encountered so far,
then it follows that if a solution lies below n ∧ o
then b must also be a solution. Consequently, it
is possible to prune the tree below n that can be
reached via application of o without risk of pruning
the only solution in the search tree.

The combination of this ineffectual operator prun-
ing variant with the obstructive operator pruning
variant of optimistic pruning defined above results
in the following exclusive pruning rule:

Optimistic pruning
For any node n and operator o if O(state(n)∧
o) ≤ V (b) then prune all potential solutions
reached via application of o from the search
tree below n.

7 Required operator inclusion

An operator o is required at node n if it must be
the case that all solutions that lie in the search
tree below node n can only be reached through
application of o. The search space reached without
application of a required operator can be pruned
as doing so cannot prune any solutions from the
search space. Required operator pruning is a form
of inclusive pruning that may be applied to any
unordered search task.

With respect to the maximum consistent pref-
erence function, an operator is required at node
n if it is the only operator active at n that can
exclude a negative case covered by state(n). This is



because, under the maximum consistent preference
function, a state can only be a solution if it covers
no negative cases. It follows that if there is a
negative case x that is covered by state(n), not
covered by state(n)∧o and is covered by state(n)∧a
for every operator a available at n other than o,
then all solutions that lie below n must be reached
via operator o. Consequently, all states below n
that are not reached via o can be pruned from the
search tree.

These considerations lead to the following prun-
ing rule for the maximum consistent preference func-
tion.

Required operator inclusion
For any node n and operator o, if there exists
a negative case x such that state(n) covers x
and state(n) ∧ o does not cover x and there is
no other operator a 6= o such that state(n)∧ a
does not cover x then it is possible to prune
from the search tree all states below n that are
not reached via o.

A less powerful version of this rule is applicable
to the Laplace preference function. This version
of the rule requires the additional constraint that
the decrease in negative cover is not accompanied
by any decrease in positive cover. In this case, for
any state below n that is not reached via o, the
application of o must decrease the negative cover
but not the positive cover and so must increase
the value of the state. It follows that o must be
included in any solution that lies below n.

Required operator inclusion for the Laplace
preference function
For any node n and operator o, if there exists a
negative case x such that state(n) covers x and
state(n) ∧ o does not cover x and there is no
other operator a 6= o such that state(n)∧a does
not cover x and pos(state(n)) = pos(state(n)∧
o) then it is possible to prune from the search
tree all states below n that are not reached via
o.

8 Non-obstructive operator inclusion

An operator o is non-obstructive at node n if it
must be the case that if a solution can be reached
without application of o below node n then there
must also exist another solution below n that can
be reached through application of o. The regions
of the search tree reached without application of
an non-obstructive operator can be pruned if a sin-
gle solution is sought as doing so cannot prune all
solutions from the search space. Non-obstructive
operator pruning is a form of inclusive pruning.

Non-obstructive operator pruning is only appli-
cable in search problems for which a single solution
is sought. A search for all solutions cannot employ
non-obstructive operator pruning as it may result

in some solutions being pruned from the search
space.

As already discussed, for the preference func-
tions defined above, the value of a state depends
solely upon how many positive and negative cases
an expression covers. Further, decreasing nega-
tive cover while holding positive cover constant in-
creases value as does increasing positive cover while
holding negative cover constant. In this context,
for any node n and operator o, if pos(state(n)) =
pos(state(n)∧ o) then (as the operators cannot in-
crease negative cover) it follows that for any solu-
tion x below n, x ∧ o must also be a solution as
pos(x ∧ o) = pos(x) and neg(x ∧ o) ≤ neg(x). It
follows that all states below n that are not reached
via application of o can be pruned from the search
tree without pruning a sole solution.

From these considerations, the following prun-
ing rule can be derived.

Positive cover neutral inclusion
For any node n and operator o, if pos(state(n)) =
pos(state(n) ∧ o) then all states below n that
are not reached via application of o can be
pruned from the search tree.

As this rule will always apply whenever required
operator inclusion for the Laplace preference func-
tion rule applies, the latter is not examined in the
experimentation below.

9 Preventing redundant operators in
solutions

The OPUSo algorithm is capable of finding solu-
tions that contain redundant operators. An op-
erator o is redundant with respect to a solution
s if there exists another solution x such that x is
reached via a path identical to that of s except that
it does not contain operator o.

The principle of Occam’s Razor is frequently in-
voked to justify the selection of classifiers that cor-
respond to non-redundant solutions in the search
space under investigation. A non-redundant solu-
tion in this search space will be a conjunction of
propositions c such that no expression produced
through deleting a single conjunct from c that has
the same value as c.

If non-redundant solutions are sought, the so-
lution s found by OPUSo can be simplified by the
simple process of considering the deletion of each
operator from s in turn. If the result r of deleting
an operator is also a solution then s should be
replaced by r.

It should be noted that the use of non-obstructive
operator inclusion increases the probability of so-
lutions containing redundant operators. Opera-
tors that are not necessary to reach a solution may
be included within a partial solution on the basis
that they cannot prevent the discovery of a so-
lution. If solutions without redundant operators



are sought then the above solution simplification
process should be applied.

The cost of solution simplification is trivial com-
pared with the potential savings from non-obstructive
operator inclusion. Each application of non-obstructive
operator inclusion halves the search space below
the current state. If applied at the root of the
search space, this reduces the search space by 2(n−1)

states, where n is the number of operators. By
contrast, solution simplification only ever requires
the evaluation of a number of potential solutions
no greater than n.

10 Computational complexity

The worst case complexity for unordered search
will always be exponential. Assuming that each
operator can only be applied once, for n search op-
erators there will be 2. states to explore. The worst
case will occur when no pruning can be performed
and all states must be evaluated. Thus the worst
case the computational complexity is O(2n). It is
only possible to analyze average case complexity
with respect to a specific search task as it is only
with respect to a specific task that it is possible
to determine the frequency and distribution of the
pruning actions that can be performed. The most
straight forward manner in which to evaluate aver-
age case computational complexity with regard to
a search task is to perform the task and to record
the number of operations required. This is done
below.

11 Experimental evaluation

The relative utility was evaluated of each of the fol-
lowing five pruning rules—optimistic pruning, neg-
ative cover neutral pruning, relative cover prun-
ing, required operator inclusion and positive cover
neutral inclusion. OPUSo was employed to find
classifiers that maximized each of the preference
functions using first all the pruning rules and then
each set of pruning rules formed by leaving one rule
out. This enabled the relative effectiveness of each
rule to be evaluated.

All fourteen categorical classification problems
from the UCI machine learning repository [8] held
at Deakin University due to previous experimental
work, were considered. These are described in Ta-
ble 1. Note that some of the data sets are not truly
categorical in nature, in that some or all of the
values are ordinal. However, these discrete ordinal
values have been treated as categorical for the sake
of this experimentation.

The following search algorithm was employed.
This description is based upon that of Webb [5]
with the addition of explicit pruning actions as
appropriate.

Each node, n, in the search tree has associated
with it three items of information:
n.state: the state that is associated with the node;
n.active: the set of operators to be explored in the
sub-tree descending from the node; and
n.op: the operator that was applied to the parent
node’s state to create the current node’s state.

A constant min val sets a lower bound on the
value of an acceptable solution. For the current
application, min val was set to the value of a state
that covered no cases. Optimistic pruning was used
to prune states the search space below which could
not exceed min val.
Algorithm: OPUSo

1. Put the start node n on a list called OPEN of un-
expanded nodes. Set s.active to the set of all oper-
ators, o1, o2, ...on. Set n.state to the start state.

2. Set BEST , the best node examined so far, to n.

3. If OPEN is empty, exit successfully with the solu-
tion represented by BEST .

4. Remove from OPEN the node n, that maximizes
optimistic(n, n.active).

5. Initialize to n.active a set containing those operators
that are still under consideration, called CUR.

6. Initialize to {} a set of nodes, called NEW , that will
contain the descendants of n that are not pruned.

7. For every operator o in n.active

(a) Generate n′, a node for which n′.state is set
to the expression formed by application of o to
n.state.

(b) If value(n′) > value(BEST )

i. Set BEST to n′.
ii. Remove from OPEN all nodes x such that

optimistic(x, x.active) ≤ value(BEST ) (op-
timistic pruning).

(c) If optimistic(n′, CUR) > min val and optimistic(n′, CUR) >
value(BEST ) (optimistic pruning) and neg(n′) ⊆
neg(n) (negative cover neutral pruning)

i. Add n′ to NEW .

ii. Set n′.op to o.

else

i. Remove n′.op from CUR.

8. (positive cover neutral inclusion) For every node n′

in NEW

(a) If pos(n′) equals pos(n)

i. Remove n′ from NEW

ii. Apply n′.op to every state in NEW

iii. Remove n′.op from CUR.

iv. While there is a state x in NEW such that
value(x) > value(BEST )

i. Set BEST to x.

ii. Remove from OPEN all nodes z such that
optimistic(z, z.active) is less than value(BEST ).

9. (required operator inclusion) For every node n′ in
NEW



Table 1: Summary of experimental data sets.

Domain Description Values Cases Classes

Audiology Medical diagnosis 162 226 24

Slovenian Breast
Cancer (SBC)

Medical prognosis 57 286 2

House Votes 84 Predict political affiliation from US
Senate voting record

48 435 2

Lenses Lense prescription 12 24 3

Lymphography Medical diagnosis 60 148 4

Monk 1 Artificial data 17 556 2

Monk 2 Artificial data 17 601 2

Monk 3 Artificial data 17 554 2

Multiplexer Artificial data 22 500 2

Mushroom Identify poisonous mushrooms 126 8124 2

Primary Tumor Medical diagnosis 42 339 22

Soybean Large Botanical diagnosis 135 307 19

Tic Tac Toe Identify won or lost positions 27 958 2

Wisconsin Breast
Cancer (WBC)

Medical diagnosis 91 699 2

(a) If there is a case that is in neg(x) of any other
state x in NEW that is not in neg(n′)

i. Remove n′ from NEW

ii. Apply n′.op to every node in NEW

iii. Remove n′.op from CUR.

iv. While there is a node x in NEW such that
value(x) > value(BEST )

A. Set BEST to x.
B. Remove from OPEN all nodes z such that

optimistic(z, z.active) ≤ value(BEST ).

10. (relative cover pruning) For every node n′ in NEW

(a) If there is another node x in NEW such that
neg(x) ⊆ neg(n′) and pos(x) ⊇ pos(n′)

i. Remove n′ from NEW

ii. Remove n′.op from CUR.

11. For every node n′ in NEW , selecting each time the
node that minimizes optimistic(n′, CUR),

(a) Remove n′.op from CUR.

(b) If optimistic(n′, CUR) > value(BEST ),

i. Set n′.active to CUR.

ii. Add n′ to OPEN .

12. Go to step 3.

This algorithm was employed to optimize each
of the preference functions for each class. For each
search, the size of the search space was 2|values|.
This search space was systematically searched once
for each class.

Table 2 presents the results for the maximum
consistent preference function and Table 3 presents
the results for the Laplace preference function. The
column titled none indicates the number of states
examined when all pruning rules are applied. For
each of the pruning rules a column presents the
number of states searched when all rules other than
the named rule are employed. Each such tally is fol-
lowed by an indication of the percentage by which

the number of states examined is reduced by the ad-
dition of the rule to the other rules. This equals (a∗
100)/p, where a is the number of states explored us-
ing all rules and p is the number of states explored
using all rules other than the one in question. A
state is considered to have been examined if it is
generated at step 7a of the algorithm. Note that re-
quired operator inclusion is not applicable with the
Laplace preference function. Note also that results
could not be obtained in a number of cases as the
size of the list of open nodes, OPEN , exceeded the
capacity of the SPARCstation 5 computer on which
experimentation was conducted (the system’s vir-
tual memory grew to exceed that available: ap-
proximately 450Mb). These cases are indicated by
a dash.

A number of results are notable. First, op-
timistic pruning is clearly the most important of
the pruning rules. For every data set, a failure to
employ optimistic pruning results in a substantial
increase in the number of states examined. The
remaining pruning rules appear to be ordered from
most to least important as follows—required op-
erator inclusion, positive cover neutral inclusion,
negative cover neutral pruning and relative cover
pruning. While application of the latter results in
some minor decreases in the number of states exam-
ined, this in no case amounts to as much as a 10%
decrease. It is also notable that required operator
inclusion has greatest effect for the two data sets
with the largest search spaces. This rule has little
effect for many of the simple search problems, but
greatly reduces the search space for complex search
problems.

These results provide a slightly biased account
of the importance of optimistic pruning, however,
as OPUSo is structured toward maximizing the ef-
fect of optimistic pruning actions. Specifically, OPUSo



Table 2: Results for the maximum consistent preference function.

Data None

positive
cover

neutral
inclusion

required
operator
inclusion

negative
cover

neutral
pruning

optimistic
pruning

relative
cover

pruning
n n ∆ n ∆ n ∆ n ∆ n ∆

Audiology 3968 5703 30 3990 1 4097 3 4502 22 3987 0
House Votes 84 286 287 0 521 45 286 0 439921 100 286 0
Lenses 30 36 17 30 0 30 0 132 77 30 0
Lymphography 748 982 24 871 14 842 11 19808 96 772 3
Monk 1 289 312 7 330 12 303 5 10079 97 289 0
Monk 2 2636 2639 0 4320 39 2645 0 7209 63 2636 0
Monk 3 280 281 0 280 0 280 0 12688 98 280 0
Multiplexer 2559 2559 0 2761 7 2559 0 56943 96 2559 0
Mushroom 258 341 24 258 0 313 18 – 258 0
Primary Tumor 3957 6270 37 4552 13 4047 2 16988 77 3980 1
SBC 7198 8430 15 14296 50 8254 13 26675 73 7255 1
Soybean Large 3094 6561 53 3172 2 3190 3 12641 76 3140 1
Tic Tac Toe 2649 2649 0 2894 8 2653 0 859966 100 2649 0
WBC 165737 171182 3 421171 61 362338 54 – 165750 0
Mean 15 18 8 81 0.5

Table 3: Results for the Laplace preference function

Data None

positive
cover neutral

inclusion

negative
cover neutral

pruning
optimistic
pruning

relative cover
pruning

n n ∆ n ∆ n ∆ n ∆
Audiology 4093 6401 36 4620 11 6024 68 4097 0
House Votes 84 521 533 2 529 2 907459 100 527 1
Lenses 30 38 21 30 0 99 30 30 0
Lymphography 871 1130 23 1048 17 5137 83 871 0
Monk 1 330 357 8 344 4 18317 98 330 0
Monk 2 4320 4326 0 4329 0 6587 34 4320 0
Monk 3 280 281 0 280 0 19377 99 280 0
Multiplexer 2769 2769 0 2769 0 78613 96 2769 0
Mushrooms 258 386 33 309 17 – 258 0
Primary Tumor 6078 10745 43 6276 3 26895 77 6091 0
SBC 14315 17418 18 17586 19 147209 90 14413 1
Soybean Large 3027 7475 60 3258 7 35521 91 3075 2
Tic Tac Toe 2894 2894 0 2902 0 – 2894 0
WBC 421171 446992 6 1035790 59 – 421991 0
Mean 15 7.8 79 0.5

maximizes the proportion of the search space placed
under states with low optimistic values on the basis
that this maximizes the probability of pruning large
sections of the search space. The relative effective-
ness of each of the other pruning rules could also be
emphasized by alternative strategies for organizing
the search space. For example, the effectiveness
of required inclusion could be increased by max-
imizing the proportion of the search space placed
under states with high negative cover, as this would
increase the scope for pruning large numbers of
states through the application of this rule.

Nonetheless, it seems safe to conclude that where
suitable optimistic evaluation functions are avail-
able, optimistic pruning is the single most impor-
tant weapon in the fight against the exponential
search space explosion in unordered search for clas-
sification learning.

It is clear, however, that the new inclusive prun-
ing rules can play important supporting roles. There

are some search tasks for which neither inclusive
pruning rule results in a reduction in the amount of
the search space explored. However, there are also
some tasks for which each rule reduces the amount
of the search space explored by over 50%. While
inclusive pruning cannot replace exclusive pruning,
it has an important role to playing in augmenting
it.

12 Conclusion

Inclusive pruning is a new form of pruning for un-
ordered search for which each pruning action deliv-
ers the same reduction in the search space (halving
the search space below a state) as does exclusive
pruning. While inclusive pruning has been demon-
strated in the context of the OPUSo search algo-
rithm, it could also be applied to fixed operator
ranking algorithms for unordered search.

Inclusive pruning rules for search in classifica-
tion learning have been defined and demonstrated



to deliver substantial savings in the proportion of
the search space traversed (in the case of the Wis-
consin Breast Cancer data, a reduction by 61%).

Inclusive pruning is by no means, however, re-
stricted to application in machine learning. It is
applicable to any unordered search problem. Pre-
vious applications of unordered search include sub-
set selection [9, 12, 20], feature selection [4], truth
maintenance [3], hitting sets and diagnosis [13].

The successful application of admissible search
to every categorical classification task in the UCI
repository demonstrates that admissible search is a
viable tool for classification learning. This is not to
argue that all classification learning should employ
admissible search. Rather, it suggests that admis-
sible search should be applied where it may be of
value, for example, when admissible evaluation of
alternative learning biases is desired. When spe-
cific learning biases are to be applied for particular
purposes, it may, however, be desirable to apply
heuristic algorithms that closely approximate the
desired bias.

Even within such heuristic algorithms, however,
there may still be room for the application of prun-
ing heuristics. The potential importance of this is
emphasized by previous experimentation that has
demonstrated that admissible search with appro-
priate pruning rules is frequently more efficient than
common heuristic search algorithms that do not
employ these pruning rules [19].

This paper has presented a new form pruning
for unordered search and demonstrated that its use
can greatly reduce the proportion of the search
space examined in search for classification learning.
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