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ABSTRACT

Both machine learning and knowledge elicitation from human experts have
unique strengths and weaknesses.   Man-machine collaboration for knowledge
acquisition allows both knowledge acquisition techniques to be employed hand-
in-hand.   The strengths of each can alleviate the otherÕs weaknesses.   This has
the potential to both reduce the time taken to develop an expert system while
increasing the quality of the finished product.   This paper discusses techniques
for man-machine collaboration for knowledge acquisition and describes Einstein, a
computer system that implements those techniques.

1.   Introduction

The traditional approach to knowledge acquisition is knowledge elicitation.   In essence, a
human expert is required to articulate a decision making procedure which is then encoded as a
knowledge base.   Knowledge elicitation relies both upon the reliability of the expert's
knowledge and upon the ability of the expert to articulate the decision procedures implicit in
that knowledge.   In practice, expert's knowledge is not infallible and experts prove to be
extremely poor at articulating decision procedures.   Indeed, it has been claimed that the more
competent domain experts become, the less able they are to describe the knowledge they use to
solve problems1.

Data-driven machine learning (DDML) provides an alternative approach to knowledge
acquisition.   A DDML system analyses a set of examples of decision making (called the
training set) in order to develop a decision procedure.   DDML has demonstrated the capacity
to produce expert systems of outstanding accuracy in suitable domains2.   However, it is also
subject to a number of deficiencies, specifically, that a set of examples is unlikely to be
complete (cover all relevant possibilities) in any complex domain and, current systems do not
have access to substantial common sense and domain specific knowledge.

Man-machine collaboration for knowledge acquisition (MMCKA) combines both knowledge
acquisition methodologies enabling the expert to contribute domain specific and common sense
knowledge without the need to articulate complete decision procedures and the computer to
contribute a capacity for exhaustive formal analysis.   This paper describes techniques for
MMCKA and Einstein, an implemented system that embodies those techniques.

2.   DLGref

The DDML algorithm at the heart of the Einstein system is DLGref3.   DLGref can develop
new rules as well as specialising and/or generalising existing rules.   It uses heuristic search
while developing an expert system that seeks to minimise changes to the initial expert system
while producing a system that maximises an evaluation criteria with respect to the training
set of examples.   One such criteria ensures completeness and consistency with respect to the
training set.   Alternative criteria allow for noise and related phenomena by employing a
trade-off between maximising the number of positive cases that a rule covers and minimising
the number of counter-examples that are covered.

DLGref differs from the two major previous DDML refinement algorithms, SEEK25 and GEM6

in a number of important respects.   Unlike SEEK2, DLGref is able to add new rules to a rule set
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and utilises a progressive search in a single direction (from specialised rules to more general
rules).   SEEK2 alternates between specialising and generalising rules, a process that carries a
risk of successive steps undermining each others effect.   Unlike GEM, DLGref minimises the
degree of change to the initial expert system.   GEM uses the initial expert system to seed a
search process, but then allows unbounded change to be wrought.   Further, DLG, and hence
DLGref, is computationally efficient, making it suitable for interactive use.   DLG and DLGref
are described and evaluated in detail elsewhere3,7,8,9,10.   Due to their complexity these
descriptions will not be repeated herein.

3.   Einstein

Einstein is a MMCKA system based on the DLGref algorithm.   Two versions have been
implemented, an interactive version that runs on Macintosh computers and an autonomous
version that runs on other platforms.   This paper describes the interactive Macintosh system.

Einstein differs from previous interactive induction systems12 in that it operates at all stages
upon production rules rather than decision trees and that the induction process can be used to
refine existing rules rather than being restricted to the development of new knowledge bases.
In consequence, unlike previous systems, Einstein can be used in an iterative refinement process
during which both the human expert and the machine learning sub-system contribute
successive modifications to a knowledge-base.

Einstein provides DDML, knowledge-base editing, and case based analysis facilities.   In order
to use the DDML and case-based analysis facilities it is necessary to provide a set of example
cases.   These may be partitioned into a training set and an evaluation set.   The former is used
by the DDML sub-system and the latter is used in evaluating system performance.   Initiative
within the system is left in the hands of the user.

Einstein currently supports a simple rule based expert system language in which conditions are
conjunctions of attribute value tests and conclusions are a simple classification.   All conclusions
assign one only from a set of mutually exclusive classifications.   Thus, all rule sets are flat.
That is, every rule directly relates the raw attributes to an ultimate conclusion.   There are no
intermediate reasoning steps.   However, this restriction is not inherent in the methodologies
employed.   Future versions of the system will support intermediate conclusions and more
powerful paradigms than attribute-value tests.

Two types of attributes are distinguished.   Ordinal attributes have values for which it is
possible to develop tests of the form min≤attribute≤max.   For nominal attributes, tests are
restricted to set membership criteria.   The system supports up to thirty-two binary (two
valued) attributes and an additional thirty-two non-binary attributes.   Non binary nominal
attributes may have up to sixty-four values.   Nominal attributes with more than sixty-four
attributes may be simulated through the use of multiple attributes.   Ordinal attributes may
be either integer or real valued.

Once an expert system has been developed, it can be output as a working stand-alone
Macintosh program, as Clips source code or in a generic expert system format.   There are plans
to support other expert system formats as demand dictates.

An initial knowledge base might be formed by importing an existing expert system developed
outside the system; application of the DDML sub-system; or the user creating a set of rules.
Rules created by the user may reflect solely his prior knowledge, intuitions and experience, or
may be developed within the system through analysis of example cases.   The initial rules
need not be exhaustive or complete.   They may simply embody general intuitions about the
domain which are believed to be helpful even if known to be inaccurate.

Once a set of rules exist, six primary types of user action are availableÑcase based analysis,
example verification and refinement, rule execution step through, model refinement, case
based critique, DDML rule refinement, configuration of the DDML sub-system and rule editing.



3.1.   Case based analysis

Einstein provides facilities for the user to examine both the performance of the rule set as a
whole on the training set and the performance of individual rules on individual examples.
Rule set evaluation causes the current rule set to be applied to every case in the training set.   A
detailed breakdown of performance is presented on a decision by decision basis.

Individual rule evaluation is automatically performed whenever a set of rules exists.   One
rule is always identified as the current rule.   The user may select at will the rule that is to be
the current rule.   A number of windows present example cases that lie in specific relationships
to the current rule.

The positive examples window displays all examples for which the rule fires and for which
the rule's conclusion is correct.   This is useful for the user in evaluating why a successful rule
succeeds.   By examining the positive examples it is possible to see how the conditions
identified in the rule relate to its conclusion.   This is also useful when considering how a rule
should be changed as it will generally be desirable to avoid changes that reduce the number of
positive examples.   Examination of the positive examples can suggest types of changes that
will not cause a rule to fail for cases in which it currently correctly succeeds.

The counter examples window displays all examples for which the rule fires and for which
the rule's conclusion is incorrect.   This information has a number of useful applications.   It can
be used to guide a consideration of possible changes to the rule to make it more specific.   In
particular, when changing a rule it is generally desirable to reduce the number of counter
examples.   Comparing the features of positive examples with the features of counter
examples provides a powerful source of guidance when considering potential rule refinements.

Counter examples can also be used to explore why particular clauses in a rule are necessary.   It
is frequently the case that an expert will examine the rules developed by Einstein's DDML
sub-system and wonder why a particular clause is included in a rule.   The DDML sub-system
will usually include a clause in a rule only if it is needed to prevent the rule from incorrectly
firing for cases to which its conclusion does not apply.   By deleting the clause, the user will
receive powerful evidence of the utility of the clause in the form of a display of all the cases
for which the rule fires incorrectly in the clause's absence.   Examination of these cases
provides a context for evaluating the potential for alternative forms of the rule that do not
employ the clause in question.

The uncovered examples window displays all examples for which the rule does not fire even
though the conclusion for the rule applies.   This provides useful guidance to the user as to the
manner in which a rule might usefully be made more general.

The insufficient evidence window displays all example cases for which, due to missing
information, it is not possible to determine whether or not the rule should fire.   This
information is useful when examining the effect of incomplete information on the rule set and
may lead to the development of auxiliary rules or the alteration of existing rules in order to
accommodate the possibility of missing data.

3.2.   Example verification and refinement

The use of case based analysis also leads to an on-going process of example verification and
refinement.   For example, if the user modifies a rule developed by the DDML sub-system and
one or more counter examples are displayed, an examination of the counter examples may
vindicate the user's modification by revealing errors in those example cases.   Similarly, an
examination of the positive examples for a rule that appears anomalous to the user may
reveal that it is based on defective examples.

A further facility for example verification is a window that displays all indistinguishable
examples.   These are example cases that have identical descriptions except that they are
assigned different decisions.   The existence of indistinguishable examples indicates that



either the examples are incorrect or that the domain model is not sufficiently powerful to
support definitive decision making.

The user is free to examine and modify the examples at all times.

3.3.   Rule execution step through

The user is also able to evaluate the rule set by examining its operation in a normal operating
environment.   In one window the user interacts with the expert system.   Meanwhile, the rules
being utilised are displayed in the rule editing window.   This enables the user to examine
how the rules operate in practice, and to quickly identify and correct deficiencies.

3.4   Model refinement

The user is free at any stage to add or delete attributes from the domain model used by the
system.   This enables him to change the language that is available for use in expressing rules.

A decision to modify the domain model may be prompted by identification of
indistinguishable examples, by an inability to specify a satisfactory rule that excludes
certain counter examples or includes certain uncovered examples or by a realisation as to why
the induction sub-system is failing to produce certain types of rule.

No previous DDML system has incorporated the ability to transform the domain model in an
interactive manner and to apply that revised model to refine rules developed under the
original model.

3.5.   Case based critique

People are used to conveying information in the form of examples.   It will frequently be the
case that a user will know that a rule or set of rules are incorrect, but be at a loss as to how
they might be improved.   In such a circumstance, the user will often be able to convey the
deficiency in the form of examples.   These examples may be either cases for which the current
rule base would reach the wrong conclusion,  or cases for which the current rule base would fail
to reach a conclusion.

Einstein allows the user to specify additional example cases at any stage, thus supporting case
based rule critique.   The new cases are taken into account during subsequent rule evaluation and
DDML refinement.

3.6.   DDML rule refinement

The DDML  rule refinement facilities can be called upon at any stage to refine either the rules
relating to a single conclusion or the entire rule set.   The user may further constrain the
automatic refinement facilities by specifying for individual rules whether they may be
refined or not.   DLGref refines rules in context of a rule set.   As a result, the rules that are
specified as not to be refined are taken into account when other rules are modified.   DLGref
adds rules to the rule set as necessary to make the rules for a single decision or the entire rule
set, as appropriate, complete with regard to the training set.

DLGref is computationally efficient allowing interactive application of rule refinement with
large sets of example cases even on low end Macintosh systems.

3.7.   Configuration of the DDML sub-system

The user is provided with a large range of options for managing the DDML sub-system.   These
range from means of providing domain specific guidance to specification of the induction
techniques that should be employed.   As already mentioned, the user can convey domain
knowledge to the DDML sub-system by specifying pertinent examples and counter-examples,
by specifying rules and by controlling which rules the system may modify.

A further facility for conveying domain specific guidance is available in the form of the
ability to identify key attributes.   These are factors of which the DDML sub-system should



always take account when developing or refining rules for a specific decision unless there are
compelling reasons to the contrary.   This facility is particularly useful when there are
insufficient examples for the system to be able to determine that a particular factor is
important for a particular decision or when formal analysis is able to develop several distinct
decision methods for a decision and the user wishes to control which is utilised.

The user is also provided with more general control over the form of expert system to be
developed and the induction techniques to employ.

The user may specify that rules are to be absolute or relative.   Absolute rules are interpretable
in isolation.   It is possible for more than one absolute rule to fire for a single case.   In this
circumstance a conflict resolution strategy must be employed.   By contrast, relative rules are
considered in order.   Only one relative rule may fire for any given case, the first rule whose
condition is satisfied.   The induction of relative rules is faster than the induction of absolute
rules as when developing a relative rule it is only necessary to consider those cases that are
not covered by rules previously developed.   However, absolute rules are easier for an expert to
understand and maintain as each such rule can be considered in isolation, whereas the meaning
of a relative rule is dependent upon all rules in a rule set that precede it.

Two settings allow the user to extend the basic DLG search strategy.   The number of concurrent
hypotheses allows the user to specify that instead of using the standard DLG search which
maintains and considers only a single alternative at a time, multiple candidates should be
maintained and considered.   At the conclusion of the search the best candidate is accepted.
The number of induction cycles allows the user to specify that multiple complete expert
systems should be developed.   Of those developed, the one containing the least rules is
selected.   These two extensions to the DLG algorithm are described by  Webb7,10.   Both have
demonstrated the induction of more accurate expert systems than the basic DLG algorithm at a
cost of decreased computational efficiency.

The final type of option controls further refinement of the rules developed by the DLG
induction stage.   The basic DLG algorithm, when applied to attribute value data, develops
rules whose conditions refer to all attributes and whose conditions are bounded by the most
extreme observed cases.   The further refinement stage examines these rules and generalises
them by deleting superfluous conditions and extending the boundaries of range tests beyond the
most extreme observed values.   Five strategies are available.   No rule refinement leaves the
output of the DLG stage unaltered.   Conservative rule refinement applies the conservative
conjunct deletion strategy9 with two scans, as a result of which clauses are only deleted if
there is strong evidence that they are redundant.   Radical rule refinement applies the radical
conjunct deletion strategy9 with two scans, as a result of which as many clauses as possible are
deleted.   Radical rule refinement also extends range boundaries beyond the most extreme
observed values to a position between the most extreme observed positive example and the
most extreme observed counter-example.   Finally, fast conservative and fast radical rule
refinement provide single scan, and thus faster, but less conservative or radical, refinements.

3.8.   Rule editing

A comprehensive rule editor allows the user to modify the rule set at any stage.   Thus, the
user may perform modifications as a result of detecting deficiencies by reviewing the current
set of rules, due to interactions with the case based analysis tools or during a rule execution
step through.

4.   Future directions

As mentioned above, Einstein is limited to rules that employ attribute-value tests and does not
allow rules that derive intermediate conclusions.   Both of these limitations will be addressed
in future versions of the system.   Intermediate conclusions can be supported by allowing
attributes to be identified that may both be the target for rules (appear in a conclusion) and be



used in rule conditions.   A hierarchy of such attributes would need to be defined in order to
prevent circular references between rules.   When the induction sub-system was applied, it
would consider each such attribute as the target classification attribute in turn.

In addition, new attributes could be defined in terms of arithmetic and logical operations upon
existing attributes.   Research into automated methods for inducing useful attributes has
demonstrated considerable success12,13.   In addition, the user could supply such attributes as
appropriate.

In order to develop a more powerful paradigm than the current use of attribute-value tests,
consideration is being given to the application of DLGref to the refinement of logic programs.
In theory, this can be achieved simply by replacing the use of least generalisation by relative
least general generalisation14.

5.   Summary

Einstein is a fully implemented knowledge acquisition environment that allows a user to
collaborate with a machine learning system in a completely integrated manner during all
stages of the knowledge acquisition cycle.   This allows both the user and the computer to
contribute their unique capabilities to the knowledge acquisition task.   Such collaboration
has the potential to reduce the time taken to develop an expert system while improving the
quality of the finished product.
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