
Webb, G.I. (1991) Data Driven Inductive Refinement of Production Rules
Page 1 of 7

Data driven inductive refinement of production rules

Geoffrey I Webb
Department of Computing and Mathematics, Deakin University, Geelong 3217, Australia

Abstract
This paper presents algorithms for inductive refinement of production rules based on the DLG
data-driven machine learning algorithm. These algorithms modify the input production rules with
reference to a set of examples so as to ensure that all positive examples are covered and no
negative examples are covered. The input production rules may either have been previously learnt
by a machine learning system or be extracted from an existing expert system.

1 Introduction
In many circumstances, the output of an autonomous data driven machine learning system will
require further refinement before it is suitable for use as a reliable classification system. One of the
motivations of the research presented herein is to provide automated tools to assist in this
refinement process.
To date, the primary role of data driven machine learning has been the initial development of a
classification system. This paper examines data driven machine learning techniques for revising
existing classification systems. The techniques to be examined operate on production rules.
The success of these techniques enables the development of a new type of knowledge acquisition
system, one that combines the power of data-driven machine learning (Michalski, 1984) with that
of interactive knowledge elicitation (Bareiss, 1989; Boose & Bradshaw, 1987; Gruber, 1989).
The form of inductive refinement discussed herein is an interactive process. Inductive refinement
is employed along side computer driven elicitation of knowledge from a human expert.

2 The DLG algorithm
The techniques to be discussed are based on the DLG data driven machine learning algorithm
(Webb, 1991a, 1991b). DLG is a computationally efficient variant of the Aq (Michalski, 1984) and
least generalisation (Plotkin, 1970, 1971) algorithms that can develop class descriptions from both
discrete and continuous attribute value data. There are several reasons why DLG is particularly
suited to the purpose of inductive refinement.

1. It can be applied to production rules which are a convenient format for communicating
knowledge between a computer system and a human expert.

2. Its computational efficiency results in rapid induction which is conducive to successful
interactive operation.

3. It can be revised readily to inductively refine existing production rules.
The DLG algorithm generates a class description in disjunctive normal form. One representation
for such class descriptions is a set of production rules.
Applied to production rules, DLG operates by generating a sequence of rules each of which covers
a subset of the examples of the class. Taken together, these rules form a ruleset that covers all
examples of the class. Each rule is formed by selecting one example, forming a maximally specific
rule that covers it and then generalising this rule to also cover other examples. It can be described
as Algorithm 1.
It should be noted that this algor ithm is most successful when disjunction is not permitted in the
antecedents of the production rules. This in no way limits the expressive power of the production
rule set, as disjunction can be obtained by forming separate rules with each disjunct as the

Pre-publication draft of a paper which appeared in the Proceedings of the First Australian Workshop on
Knowledge Acquisition for Knowledge-Based Systems (AKAW '91), pages 44-52

Webb, G.I. (1991) Data Driven Inductive Refinement of Production Rules
Page 2 of 7

antecedent of a different rule, For the purposes of this paper, it will be assumed henceforth that
disjunction is not permitted in the antecedents of production rules.

2.1 Simple DLG revision

A simple alteration to the DLG algorithm allows it to accept as input a set of production rules and
then revise these against the available examples. This is presented as Algorithm 2.
This algorithm performs three types of modification to a production rule set. Rules may be added,
deleted or generalised. Rules are generalised if it is possible to do so in such a manner as to cover
positive instances not covered by rules already examined, while not covering any negative
instances. Rules are deleted if they cover instances in NEG or cannot be generalised to cover any
instance in POS Rules are added if the ruleset, after generalisation and deletion of initial rules,
does not cover all instances in POS.

Input: POS (a training set of instances belonging to the class of interest)

NEG(a training set of instances not belonging to the class of interest)
Output: R (a set of production rules for the class.)

initialise R to ?
while POS is not empty

randomly select and remove an instance i from POS.

initialise c to the most specific rule that covers i.
for x is set to each successive instance in P0S

set I to a least generalisation of c that covers x.

if l does not cover any instance in NEG
set c to l

remove from POS all instances covered by c.

add c to R.
end while.

Algorithm 1: DLG

An example will serve to illustrate the process. The examples to be presented will relate to tile data
set presented in Table 1. For the purposes of illustration, we will assume that the conditions of
rules take the form of a simple conjunction of clauses, each of which relates to a single attribute
and each of which takes the form of a test for range or set membership or equality. It should be
noted, however, that the technique is in no way restricted to such simple types of rules.
Let us suppose that C, the initial ruleset for A, is

IF Colour = black & Age ≥ 43 & 11 ≤ Price ≤ 23 THEN A; and
IF Size ≥ 10 & Weight ≤ 3 THEN A.

First, we initialise R to ? . POS is not empty and C is not empty, so we set c to

IF Colour = black & Age ≥ 43 & 11 ≤ Price ≤ 23 THEN A

and remove this rule from C. This rule, c, does not cover any case in NEG, so for each successive
case, x, in POS we obtain a least generalisation of c that that covers x. The least generalisation of c
that covers the first case is

IF Colour = black & Age ≥ 37 & 11 ≤ Price ≤ 23 THEN A.

This does not cover any case in NEG and so is accepted. This continues with the successive
generalisations.

Webb, G.I. (1991) Data Driven Inductive Refinement of Production Rules
Page 3 of 7

Size Colour Weight Age Price Class

16 black 3 37 11 A

20 black 1 43 23 A

32 black 2 48 15 A

21 black 2 29 19 A

31 black 5 23 2 A

10 black 5 21 1 A

19 black 4 19 9 B

12 black 6 42 0 B

16 black 5 12 4 B

9 red 0 43 26 B

1 blue 5 38 3 B

8 blue 2 39 17 B

Table 1: Example Data

IF Colour = black & Age ≥ 37 & 11 ≤ Price ≤ 23 THEN A,
IF Colour = black & Age ≥ 37 & 11 ≤ Price ≤ 23 THEN A,
IF Colour = black & Age ≥ 29 & 11 ≤ Price ≤ 23 THEN A,

IF Colour = black & Age ≥ 23 & 2 ≤ Price ≤ 23 THEN A, and
IF Colour = black & Age ≥ 21 & 1 ≤ Price ≤ 23 THEN A.

None of these covers a case in NEG and thus all are accepted. The clause c now equals the last of
these values. It covers all cases in POS, so all cases are removed from POS and R is set to R v c
which equals

IF Colour = black & Age ≥ 21 & 1 ≤ Price ≤ 23 THEN A.

POS is now empty, so the algorithm terminates with this single rule as the result.
This first simple example demonstrates the generalisation and deletion of rules from the initial
ruleset. Rules are added to the ruleset when it is not possible to generalise the initial rules to cover
all cases in POS. For example, if the initial ruleset contained only the rule

IF Size ≥ 20 & Age ≥ 10 & Price ≥ 5 THEN A,

this would be generalised to

IF Size ≥ 20 & Age ≥ 10 & Price ≥ 2 THEN A

which does not cover the first or last case in POS. Consequently, a second rule would be added -
IF1O≤ Size<16 & Colour = black & 3 ≤ Weight ≤ 5 & 21 ≤ Age ≥ 37 & 1 ≤ Price ≥ 11

THEN A.

Webb, G.I. (1991) Data Driven Inductive Refinement of Production Rules
Page 4 of 7

Input: POS (a training set of instances belonging to the class of interest)

NEG (a training set of instances not belonging to the class of interest)

C (a set of production rules)
Output: R (a set of production rules for the class.)

initialise R to ? .

while POS is not empty and C is not empty
randomly select and remove one of the rules r from C.
if r does not cover any instance in NEG

for x is set to each successive instance in POS
set I to the least generalisation of r that covers x.
if l does not cover any instance in NEG

set r to l.
if r covers one or more instances from POS

remove from POS all instances covered by r.

add c to R.
end while.
while POS is not empty

randomly select and remove an instance i from POS.
initialise r to the most specific rule that covers i.
for x is set to each successive instance in POS

set I to the least generalisation of r that covers x.
if l does not cover any instance in NEG

set r to l

remove from POS all instances covered by r.
add c to R.

end while.

Algorithm 2: Simple DLO revision

Webb, G.I. (1991) Data Driven Inductive Refinement of Production Rules
Page 5 of 7

Input: POS (a training set of instances belonging to the class of interest)
NEG (a training set of instances not belonging to the class of interest)
C (a class description in disjunctive normal form)

Output: R (a class description for the class.)
initialise R to ? .
while POS is not empty and C is not empty

randomly select and remove one of the rules c from C.
if c covers an instance in POS

randomly select an instance x from POS that is covered by c

for every attribute not mentioned in c specialise c to require that the value
of that attribute be the value of that attribute for x

if c does not cover any instance in NEG

for x is set to each successive instance in POS
set I to the non-disjunctive least generalisation of c that covers x.
if I does not cover any instance in NEG

set c to l.
if c covers one or more instances from POS

 remove from POS all instances covered by c.

set R to c v R.
end while.
while POS is not empty

randomly select and remove an instance i from POS.
initialise c to the most specific non-disjunctive class description that covers i.
for x is set to each successive instance in POS

set I to the non-disjunctive least generalisation of c that covers x.
if I does not cover any instance in NEG

set c to l

remove from POS all instances covered by c.
set R to c v R.

end while.

Algorithm 3: DLG revision II

2.2 The DLG Revision II algorithm

This deficiency is remedied by the DLG revision II algorithm, presented as Algorithm 3. This
algorithm differs from the simple DLG revision algorithm only in that it performs an initial
specialisation on each clause of each rule based on a randomly chosen positive instance. This
enables the algorithm to add conjuncts to a rule, based on observed values from positive cases. The
output of this final algorithm covers all positive cases and no negative case from the training set.
This revised algorithm can add, delete, specialise and/or generalise rules. Rules are only deleted if
they cover negative examples.
To demonstrate this algorithm, with reference to Table 1, consider the case where C is

IF 20 ≤ Age ≤ 50 & Price ≥ 1 THEN A.

Webb, G.I. (1991) Data Driven Inductive Refinement of Production Rules
Page 6 of 7

First, we initialise R to ? . POS is not empty and C is not empty, so we set c to the only rule in the
ruleset,

IF 20 ≤ Age≤ 50 & Price ≥ 1 THEN A.

This covers instances in POS, so we select one such case, x, in this example, the first case. For
every attribute not mentioned in c, c is specialised to require that the value for the attribute be the
value of that attribute for x. The rule c is set to the result,

IF Size = 16 & Colour = black & Weight = 3 & 20 ≤ Age≤ 50 & Price ≥ 1 THEN A.

This does not cover any case in NEG and so is generalised against all of the remaining cases in
POS, resulting in the rule c becoming
IF 10≤ Size = 32 & Colour = black & 1≤ Weight = 5 & 20≤ Ages ≤ 50 & Price ≥ 1 THEN A.
This correctly covers all cases in POS while covering no case in NEG.
Note that the DLG revision II algorithm, unlike the DLG and simple DLG revision algorithms, is
restricted in application to attribute value machine learning (Quinlan, 1986.) If such an algorithm
were desired for machine learning in another context, such as structural description machine
learning (Dietterich & Michalski, 1981), the initial specialisation step would need to be modified
accordingly.

2.3 Rule simplification

A remaining deficiency of this algorithm is that all the resulting rules will refer to all attributes. In
consequence, they will almost certainly be over specialised and unnecessarily complex. One
manner in which to rectify this problem is to apply conjunct deletion strategies that have been
developed for use with the DLG algorithm (Webb, 1991c.) There are a number of these strategies,
all of which are based on search techniques that delete conjuncts from rules without making the
rule cover any cases in NEG.
The most simple of these strategies involves a sequential scan through the conjuncts in each rule.
Each successive conjunct is deleted and the resulting rule is evaluated to determine if it covers any
negative cases. If it does cover negative cases, then the conjunct is reinstated. Applying this
strategy in a left to right scan to the rule

IF 10≤ Size = 32 & Colour = black & 1≤ Weight = 5 & 20≤ Age ≤ 50 &Price≥ 1 THEN A,

which was the result of the most recent example, above, produces

IF Colour = black & 20≤ Age ≤ 50 & Price ≥ 1 THEN A.
After both inductive revision and conjunct deletion, the end result is that one additional conjunct,
Colour = black, has been added to the rule that was input to the refinement process.
A potential problem associated with the application of a conjunct deletion strategy is that conjuncts
that are in some manner key to rules in the input ruleset may be deleted. In this case, it is possible
that the output of the refinement process will bear little or no obvious surface relationship to the
input. This can be prevented by disallowing the deletion of conjuncts that appeared in the input, or
are direct generalisations of conjuncts that appeared in the input. Alternatively, the user can be
permitted to identify key conjuncts, which may be generalised but not deleted from the result. This
latter option introduces greater flexibility at the cost of greater demands upon the user.

3 Conclusion
Previous research into data-driven induction has concentrated on the induction of new knowledge.
The algorithms presented above support a different application of induction, the refinement of
existing knowledge. These algorithms enable the development of interactive knowledge
acquisition environments, of which Einstein (Webb, 1991c) is an example, where both the human
expert and the computer system can provide input to every stage of the knowledge acquisition and
refinement process.

Webb, G.I. (1991) Data Driven Inductive Refinement of Production Rules
Page 7 of 7

References
[1] Bareiss, R. (1989) Exemplar Based Knowledge Acquisition: A Unified Approach to Concept

Learning. Academic Press, San Diego.
[2] Boose, J. H. & Bradshaw, J. M. (1987) Expertise transfer and complex problems: Using

AQUINAS as a knowledge-acquisition workbench for knowledge-based systems . Int. J.
Man-Machine Studies, 26: 3-28.

[3] Dietterich, T. G. & Michalski, R. S. (1981) Inductive learning of structural descriptions:
Evaluation criteria and comparative review of selected methods . Artificial Intelligence,
16: 257-294.

[4] Gruber, T. (1989) The Acquisition of Strategic Knowledge. Academic Press, San Diego.
[5] Michalski, R. S. (1984). A theory and methodology of inductive learning. In R. S.

Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine Learning: An Artificial
Intelligence Approach, Springer-Verlag, Berlin pp. 83-129.

[6] Plotkin, G. D. (1970). A note on inductive generalisation. In B. Meltzer & D. Mitchie
(Eds.) Machine intelligence 5, Edinburgh University Press, pp. 153-163.

[7] Plotkin, G. D. (1971). A further note on inductive generalisation. In B. Meltzer & D.
Mitchie (Eds.) Machine Intelligence 6, Edinburgh University Press, pp. 101-124.

[8] Quinlan, J. R. (1986) Induction of decision trees. Machine Learning, 1: 81-106
[9] Quinlan, J. R. (1987). Simplifying decision trees. International Journal of Man-Machine

Studies, 27:221-234.
[10] Webb G. I. (1991a) Rule optimisation and theory optimisation: Heuristic search

strategies for data-driven machine learning. In H. Motada, R. Mizoguchi, J. Boose & B.
Gaines (Eds) Knowledge Acquisition for Knowledge-Based Systems. IOS Press, pp. 219-232.

[11] Webb, G. I. (1991b) Learning disjunctive characteristic descriptions by least
generalisation. Technical Report 2/91, Department of Computing and Mathematics, Deakin
University, Geelong.

[12] Webb, G.I. (1991c) Einstein-An interactive inductive knowledge acquisition tool.
Technical Report 3/91, Department of Computing and Mathematics, Deakin University,
Geelong.

