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ABSTRACT
LBR has demonstrated outstanding classification accuracy.
However, it has high computational overheads when large
numbers of instances are classified from a single training
set. We compare LBR and the tree-augmented Bayesian
classifier, and present a new heuristic LBR classifier that
combines elements of the two. It requires less computation
than LBR, but demonstrates similar prediction accuracy.

1. INTRODUCTION
The naive Bayesian classifier [1] is known to be optimal and
efficient for classification when all the attributes are mutu-
ally independent given the class and the required probabili-
ties can be accurately estimated from the training data. As-
sume X is a finite set of instances, and A = {A1, A2, · · · , An}
is a finite set of n attributes. An instance x ∈ X is de-
scribed by a vector < a1, a2, · · · , an >, where ai is a value
of attribute Ai. C is called the class attribute. Predic-
tion accuracy will be maximized if the predicted class L(<
a1, a2, · · · , an >) = argmaxc(P (c| < a1, a2, · · · , an >). Un-
fortunately, unless < a1, a2, · · · , an > occurs enough times
within X, it will not be possible to directly estimate P (c| <
a1, a2, · · · , an >) from the frequency with which each class
c ∈ C co-occurs with < a1, a2, · · · , an > within X. Bayes’
theorem provides an equality that might be used to help
estimate P (c| < a1, a2, · · · , an >) in such a circumstance:

P (ci| < a1, a2, · · · , an >) =
P (ci)P (< a1, a2, · · · , an > |ci)

P (< a1, a2, · · · , an >)
.

(1)

If the n attributes are mutually independent within each
class value, then the probability is directly proportional to:

P (ci| < a1, a2, · · · , an >) ∝ P (ci)

nY
k=1

P (ak|ci). (2)

Classification selecting the most probable class as estimated
using (1) and (2) is the well-known naive Bayesian classifier.

The naive Bayesian classifier has been shown in many do-
mains to be surprisingly accurate compared to alternatives

including decision tree learning, rule learning, neural net-
works, and instance-based learning. Domingos and Paz-
zani [2] argued that the naive Bayesian classifier is optimal
even when the independence assumption is violated, as long
as the ranks of the conditional probabilities of classes given
an example are correct. However, previous research has
shown that semi-naive techniques and Bayesian networks
that explicitly adjust the naive strategy to allow for vio-
lations of the independence assumption, can improve upon
the prediction accuracy of the naive Bayesian classifier in
many domains. This suggests that the ranks of conditional
probabilities are frequently not correct. One approach to
improving the naive Bayesian classifier is to relax the in-
dependence assumptions. Kononenko [3] proposed a semi-
naive Bayesian classifier, which partitioned the attributes
into disjoint groups and assumed independence only between
attributes of different groups. Pazzani [4] proposed an algo-
rithm based on the wrapper model for the construction of
Cartesian product attributes to improve the naive Bayesian
classifier. The naive Bayesian tree learner, NBTree[5], com-
bined naive Bayesian classification and decision tree learn-
ing. It uses a tree structure to split the instance space into
sub-spaces defined by the paths of the tree, and generates
one naive Bayesian classifier in each sub-space. NBTree fre-
quently achieves higher accuracy than either a naive Bayesian
classifier or a decision tree learner. Although NBTree can
alleviate the attribute inter-dependence problem of naive
Bayesian classification to some extent, NBTree suffers from
the replication and fragment problem as well as the small
disjunct problem due to the tree structure. Friedman, Geiger
and Goldszmidt [6] compared the naive Bayesian method
and Bayesian network, and showed that using unrestricted
Bayesian networks did not generally lead to improvements
in accuracy and even reduced accuracy in some domains.
They presented a compromise representation, called Tree-
Augmented naive Bayes (TAN), in which the class node di-
rectly points to all attributes nodes and an attribute node
can have only at most one additional parent to the class
node. Based on this presentation, they utilized the con-
cept of mutual information to efficiently find the best tree-
augmented naive Bayesian classifier. Zheng and Webb [7]
proposed the lazy Bayesian rule (LBR) learning technique.
LBR can be thought of as applying lazy learning techniques
to naive Bayesian rule induction. At classification time, for
each test example, it builds a most appropriate rule with a
conjunction of conditions as its antecedent and a local naive
Bayesian classifier as its consequent.
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Figure 1: An example of a tree-augmented Bayesian network

Among these approaches of relaxing the attribute indepen-
dence assumption, LBR has demonstrated remarkably low
classification error rate. Zheng and Webb [7] experimentally
compared LBR with a naive Bayesian classifier, a decision
tree classifier, a Bayesian tree learning algorithm, a con-
structive Bayesian classifier, a selective naive Bayesian clas-
sifier, and a lazy decision tree algorithm in a wide variety of
natural domains. In their extensive experiments, LBR ob-
tained lower error than all the alternative algorithms. How-
ever, LBR is computationally inefficient if large numbers
of objects are to classified from a single training set. In
this paper, we compare the LBR and TAN techniques. A
heuristic strategy for selecting attribute values to form the
antecedent of a lazy Bayesian rule will be presented, which
can be thought of as an application of TAN . Experimental
comparisons and analysis of this heuristic lazy learning of
Bayesian rules algorithm with the naive Bayesian classifier,
LBR and TAN show that the heuristic algorithm has the
almost same prediction accuracy as LBR with much lower
computational requirements.

2. TAN AND LBR
Bayesian networks have been a popular medium for
graphically representing and manipulating attribute inter-
dependencies. Bayesian networks are directed acyclic graphs
(DAG) that allow for efficient and effective representation
of joint probability distributions over a set of random vari-
ables. Each vertex in the graph represents a random vari-
able, and each edge represents direct correlations between
the variables. Each variable is independent of its non-
descendants given its parents in the graph. Bayesian net-
works provide a kind of direct and clear representation for
the dependencies among the variables or attributes. A tree-
augmented Bayesian network is a restricted form of Bayesian
network [8], which can be defined by the following condi-
tions:

• Each attribute has the class attribute as a parent;

• Attributes may have at most one other attribute as a
parent.

Fig. 1 shows an example of a tree-augmented Bayesian net-
work.

In a tree-augmented Bayesian network, a node without any
parent, other than the class node, is called an orphan. Given
a tree-augmented Bayesian network, if we extend arcs from
node Ak to every orphan node Ai, then node Ak is said to
be a super parent. For any node v, we denote its parents by
Parents(v). If v is an orphan, then Parents(v) = ∅.

LBR uses lazy learning to learn at classification time a single
Bayesian rule for each instance to be classified. LBR is sim-
ilar to LazyDT (Lazy Decision Tree learning algorithms) [9],
which can be considered to generate decision rules at clas-
sification time. For each instance to be classified, LazyDT
builds one rule that is most appropriate to the instance by
using an entropy measurement. The antecedent of the rule
is a conjunction of conditions in the form of attribute-value
pairs. The consequent of the rule is the class to be predicted,
being the majority class of the training instances that sat-
isfy the antecedent of the rule. LBR can be considered as a
combination of the two techniques NBTree and LazyDT. Be-
fore classifying a test instance, it generates a rule (called a
Bayesian rule) that is most appropriate to the test instance.
Alternatively, it can be viewed as a lazy approach to classi-
fication using the following variant of Bayes theorem,

P (Ci|V1 ∧ V2) = P (Ci|V2)P (V1|Ci ∧ V2)/P (V1|V2) (3)

Here any test instance can be described by a conjunction
of attribute values V , and V1 and V2 are any two conjunc-
tions of attribute values such that each vi from belongs to
exactly one of V1 or V2. At classification time, for each
instance to be classified, the attribute values in V are allo-
cated to V1 and V2 in a manner that is expected to minimize
estimation error. The antecedent of a Bayesian rule is the
conjunction of attribute-value pairs from the set V2. The
consequent is a local naive Bayesian classifier created from
those training instances that satisfy the antecedent of the
rule. THis local naive Bayesian classifier only uses those at-
tributes that belong to the set V1. During the generation
of a Bayesian rule, the test instance to be classified is used
to guide the selection of attributes for creating attribute-
value pairs. The values in the attribute-value pairs are al-
ways the same as the corresponding attribute values of the
test instance. The objective is to grow the antecedent of
a Bayesian rule that ultimately decreases the errors of the
local naive Bayesian classifier in the consequent of the rule.
Leave-one-out cross validation is used to select the attribute
values to be moved to the left of a lazy Bayesian rule. The
structure of a Bayesian network for a lazy Bayesian rule
is shown in Fig. 2, here V1 = A1, A2, · · · , Ak and V2 =
Ak+1, Ak+2, · · · , An. The general form of this lazy Bayesian
rule can be simply expressed as (Ak+1 ∧Ak+2 ∧ · · · ∧An) →
NaiveBayesClassifier(A1, A2, · · · , Ak). Both LBR and TAN
can be viewed as variants of naive Bayes that relax the at-
tribute independence assumption. TAN relaxes this assump-
tion by allowing each attribute to depend upon at most one
other attribute in addition to the class. LBR allows an at-
tribute to depend upon many other attributes, but all at-
tributes depend upon the same set of other attributes.

3. DESCRIPTION OF HEURISTIC LAZY
BAYESIAN RULE ALGORITHM

The principle cause of LBR’s inefficiency when large num-
bers of instances are to be classified is the selection for each
such instance of the attributes to place in the antecedent of
the rule. Our strategy in the new algorithm is to move as
much of this computation to training time as possible, per-
forming as much of the computation as possible once only
at the time when the training data is first analysed. To
this end we seek at training time to identify attributes that
should not be considered as candidates for inclusion in an
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Table 1: The heuristic lazy Bayesian rule algorithm

ALGORITHM: HLBR (X, V, C, test, α)
INPUT: 1) X is the set of training instances,

2) V is the set of attributes,
3) C is the set of class values,
4) T is a test instance,
5) α is the significance level.

OUTPUT: a predicted class for the test instance.

Candidates = ∅; /* The candidate atrributes */
GlobalNB = NB trained using X, V and C;
Errors = leave-one-out errors on X of LocalNB;
FOR each attribute a DO

ThisErrors = leave-one-out errors on X of LBR with a as the antecedent;
IF ThisErrors < Errors

THEN Candidates = Candidates + a;
FOR each instance test ∈ T DO

Cond = true;
BestNB = GlobalNB;
BestErrors = Errors;
REPEAT

FOR each A in Candidates whose value vA on test isn’t missing DO
Xsubset = instances in X with (A = vA);
TempNB = NB trained using (V − {A}) on Xsubset;
TempErrors = (leave-one-out errors on Xsubset of TempNB)

+ (errors from Errors for instances in (X −Xsubset));
IF ((TempErrors < BestErrors) AND (TempErrors is significantly lower than Errors)

THEN BestErrors = TempErrors;
BestNB = TempNB;
ABest = A;

IF (an ABest is found )
THEN Cond = Cond ∧ (ABest = vABest);

LocalNB = BestNB;
Xtraining = Xsubset corresponding to ABest;
V = V − {ABest};
Errors = leave-one-out errors on Xtraining of LocalNB;

ELSE EXIT from the REPEAT loop;
Classify test using LocalNB;
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Figure 2: The structure of a Bayesian network for an exam-
ple LBR

antecedent at classification time. To achieve this we perform
leave-one-out cross validation for each attribute assessing
the error when lazy Bayesian rules are formed using that
and only that attribute in the antecedent. We restrict the
candidates for consideration at classification time to those
for which the cross validation error on this test is less than
the cross validation error of naive Bayes. Our reasoning is
that if there are harmful interdependencies between this and
other attributes then this test will succeed. If there are no
such harmful interdependencies then we should not consider
the attribute as a candidate for inclusion in an antecedent.
The heuristic lazy Bayesian rule algorithm is described in
Table 1.

4. EXPERIMENTS
We compare the classification performance of four learning
algorithms: the naive Bayesian classifier, LBR, TAN and
our heuristic lazy Bayesian rule algorithm (HLBR). We use
the naive Bayes classifier implemented in the Weka system,
simply called Naive. We implemented a lazy Bayesian rule
(LBR) learning algorithm and a tree-augmented Bayesian
network (TAN) learning algorithm in the Weka system. All
the experiments are run in the Weka system [10].

Thirty-five natural domains are used in the experiments
shown in Table 2. Twenty-nine of these are all the data sets
used in [7], the remaining are six larger data sets (German,
Mfeat-mor, Satellite, Segment, Sign, and Vehicle). In Ta-
ble 2, “Size” means the number of instances in a data set.
“Class” means the number of values of a class attribute.
“Attr.” means the number of attributes, not including the
class attribute. The error rate of each classifier on each do-
main is obtained by running 10-fold cross validation, and
the random seed for 10-fold cross validation takes on the
Weka default value. We also use the Weka default discretiza-
tion method “weka.filters.DiscretizeFilter,” an implementa-
tion of MDL discretization [11], as the discretization method
for continuous values.

All experimental results for the error rates of the algorithms
are shown in Table 3. The final two rows present the mean
error across all data sets and the geometric mean error ratio.
The latter measure is the geometric mean of the ratio for
each data set of the error of respective algorithm divided
by the error of HLBR. The geometric mean is used as the
appropriate average for ratios. The average is at best a crude
measure of overall performance as error rates on different
data sets are incommensurable. The error ratio attempts to
correct this problem by standardising the outcomes. Both

Table 2: Descriptions of Data

Domain Size Class Atts.

1 Annealing Processes 898 6 38
2 Audiology 226 24 69
3 Breast Cancer(Wisconsin) 699 2 9
4 Chess (KR-vs-KP) 3196 2 36
5 Credit Screening(Australia) 690 2 15
6 Echocardiogram 74 2 6
7 Germany 1000 2 20
8 Glass Identification 214 7 10
9 Heart Disease(Cleveland) 303 2 13

10 Hepatitis Prognosis 155 2 19
11 Horse Colic 368 2 22
12 House Votes 84 435 2 16
13 Hypothyroid Diagnosis 3163 2 25
14 Iris Classification 150 3 4
15 Labor Negotiations 57 2 16
16 LED 24(noise level=10%) 1000 10 24
17 Liver Disorders(bupa) 345 2 6
18 Lung Cancer 32 3 56
19 Lymphography 148 4 18
20 Mfeat-mor 2000 10 6
21 Pima Indians Diabetes 768 2 8
22 Post-Operative Patient 90 3 8
23 Primary Tumor 339 22 17
24 Promoter Gene Sequences 106 2 57
25 Satellite 6435 6 36
26 Segment 2310 7 19
27 Sign 12546 3 8
28 Solar Flare 1389 2 9
29 Sonar Classification 208 2 60
30 Soybean Large 683 19 35
31 Splice Junction Gene Seq. 3177 3 60
32 Tic-Tac-Toe End Game 958 2 9
33 Vehicle 846 4 18
34 Wine Recognition 178 3 13
35 Zoology 101 7 16
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Table 3: Average Error Rate for Each Data Set

Domain Naive LBR TAN HLBR

1 Annealing Processes 5.46 5.46 4.01 5.46
2 Audiology 29.20 29.20 29.20 29.20
3 Breast Cancer(Wisconsin) 2.58 2.58 2.58 2.58
4 Chess (KR-vs-KP) 12.36 3.57 5.07 3.85
5 Credit Screening(Australia) 15.07 14.64 14.35 14.64
6 Echocardiogram 27.48 27.48 28.24 27.48
7 Germany 24.60 24.70 24.80 24.60
8 Glass Identification 11.68 9.81 6.07 9.81
9 Heart Disease(Cleveland) 16.50 16.50 16.50 16.50

10 Hepatitis Prognosis 16.13 16.13 16.13 16.13
11 Horse Colic 20.11 19.29 18.48 19.29
12 House Votes 84 9.89 7.13 6.90 7.13
13 Hypothyroid Diagnosis 2.94 2.78 2.88 2.90
14 Iris Classification 6.67 6.67 6.00 6.67
15 Labor Negotiations 3.51 3.51 3.51 3.51
16 LED 24(noise level=10%) 24.50 24.70 24.50 24.70
17 Liver Disorders(bupa) 36.81 36.81 40.29 36.52
18 Lung Cancer 46.88 43.75 50.00 43.75
19 Lymphography 14.19 14.19 15.54 14.19
20 Mfeat-mor 30.65 29.95 30.10 29.90
21 Pima Indians Diabetes 25.00 24.87 25.39 24.87
22 Post-Operative Patient 28.89 28.89 30.00 28.89
23 Primary Tumor 48.97 49.85 49.85 49.85
24 Promoter Gene Sequences 8.49 8.49 8.49 8.49
25 Satellite 18.90 13.27 12.63 13.40
26 Segment 11.08 6.41 6.28 6.45
27 Sign 38.58 20.93 26.85 20.98
28 Solar Flare 18.57 15.69 16.85 15.62
29 Sonar Classification 25.48 25.96 23.56 28.37
30 Soybean Large 7.17 7.17 7.03 7.17
31 Splice Junction Gene Seq. 4.66 4.06 4.69 4.25
32 Tic-Tac-Toe End Game 29.54 14.61 28.81 13.99
33 Vehicle 39.48 31.44 31.68 31.44
34 Wine Recognition 3.37 3.37 3.37 3.37
35 Zoology 5.94 5.94 5.94 5.94

Mean 19.18 17.14 17.90 17.20
Geo. Mean 1.14 0.99 1.02 1.00
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Table 4: Comparison of LBR to others

WIN LOSS DRAW p

Naive 16 4 15 0.012
TAN 15 11 9 0.557
HLBR 7 5 23 0.774

Table 5: Comparison of TAN to others

WIN LOSS DRAW p

Naive 17 9 9 0.168
LBR 11 15 9 0.557
HLBR 12 14 9 0.845

measures suggest that all of LBR, TAN, and HLBR enjoy
substantially lower error than naive Bayes. The differences
between LBR, TAN, and HLBR are much smaller, ordered
from lowest to highest error LBR, then HLBR, then TAN.

The win/loss/draw record provides a more robust evaluation
of relative performance over a large number of data sets. Ta-
bles 4, 5, and 6 present the win/loss/draw records for LBR,
TAN and HLBR, respectively. This is a record of the num-
ber of data sets for which the nominated algorithm achieves
lower, higher, and equal error to the comparison algorithm,
measured to two decimal places. The final column presents
the outcome of a two-tailed sign test. This is the probability
that the observed outcome or more extreme would be ob-
tained by chance if wins and losses were equiprobable. LBR
and HLBR both achieve lower error than naive Bayes with
frequency that is statistically significant at the 0.05 level.
No win/loss/draw record indicates a significant difference
in performance. This suggests that LBR, HLBR and TAN
demonstrate comparable levels of error rate. LBR has a
higher error rate than TAN in eleven data sets, and lower
error rate in fifteen. HLBR has a higher error rate than TAN
in twelve data sets, and lower error rate in fourteen. LBR
has a lower error rate than the naive Bayes classifier in six-
teen out of the thirty-five data sets, and a higher error rate
in only four data sets. HLBR has a lower error rate than
the naive Bayes classifier in seventeen out of the thirty-five
data sets, and a higher error rate in only three data sets.

These results suggest that HLBR performs, in general, at a
similar level of prediction accuracy to LBR. This comparable
accuracy is obtained with far lower computation than LBR.
The runtimes on all datasets of LBR and HLBR are shown in
Table 7. Both LBR and HLBR were run on a dual-processor
1.7GHz Pentium 4 Linux computer with 2GB RAM. Run-
times less than one second are recorded as 1 second. Note
that there is considerable variance in run times on the ma-

Table 6: Comparison of HLBR to others

WIN LOSS DRAW p

Naive 17 3 15 0.002
LBR 5 7 23 0.774
TAN 14 12 9 0.845

Table 7: Runtime of LBR and HLBR (Unit: Seconds)

Domain LBR HLBR

1 Annealing Processes 177 94
2 Audiology 1028 470
3 Breast Cancer(Wisconsin) 16 3
4 Chess (KR-vs-KP) 18468 6516
5 Credit Screening(Australia) 66 40
6 Echocardiogram 1 1
7 Germany 164 56
8 Glass Identification 5 2
9 Heart Disease(Cleveland) 6 4

10 Hepatitis Prognosis 4 5
11 Horse Colic 15 18
12 House Votes 84 26 28
13 Hypothyroid Diagnosis 3905 399
14 Iris Classification 1 1
15 Labor Negotiations 1 1
16 LED 24(noise level=10%) 696 186
17 Liver Disorders(bupa) 2 2
18 Lung Cancer 3 20
19 Lymphography 5 5
20 Mfeat-mor 156 117
21 Pima Indians Diabetes 25 9
22 Post-Operative Patient 1 1
23 Primary Tumor 192 50
24 Promoter Gene Sequences 16 131
25 Satellite 48923 40624
26 Segment 4652 896
27 Sign 11821 9670
28 Solar Flare 103 94
29 Sonar Classification 32 155
30 Soybean Large 1172 247
31 Splice Junction Gene Seq. 12406 4391
32 Tic-Tac-Toe End Game 34 36
33 Vehicle 106 116
34 Wine Recognition 3 3
35 Zoology 5 5

chine on which the experiments were run. The run time of
LBR was higher than that of HLBR on 19 data sets and
lower on 8. We calculated the ratio derived by dividing the
run time of LBR by the run time of HLBR for each data set.
The appropriate form of average for such ratio values is the
geometric mean. The geometric mean was 1.4, indicating a
substantial average advantage to HLBR.

5. CONCLUSIONS
We present a heuristic variant of the lazy Bayesian rules
classifier. HLBR seeks to reduce classification time when
there are large numbers of instances to be classified by iden-
tifying some attributes that should never be considered as
candidates for inclusion in the antecedent of a lazy Bayesian
rule. Our experimental results suggest that HLBR is suc-
cessful in this aim while also managing to retain a similar
level of classification accuracy to the original LBR.
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