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Abstract

This work surveys well-known approaches to building decidists. Some novel
variations to strategies based on default rules for the nayamon class and inser-
tion of new rules before the default rule are presented. § hes expected to offer
speed up in the construction of the decision list as well aspression of the
length of the list. These strategies and a testing regime baen implemented
and some empirical studies done to compare the strategipgrinental results
are presented and interpreted. We show that all strategie®ddecision lists of
comparable accuracy. However, two techniques are showeliteed this accu-
racy with lists composed of significantly fewer rules thatemdative strategies. Of
these, one also demonstrates significant computationahéalyes. The prepend-
ing strategy is also demonstrated to produce decisionibish are, as much as
an order of magnitude, shorter than those produced by CN2.

1 Introduction

A decision list [1] is an ordered list of classification rul@his contrasts with
unordered rules [2, 3] for which there must be a resoluticzcedure to select
between candidates when two or more rules cover a singlelEasa decision list,
the first rule which covers the case is applied. As a resubtcésibn list may be less
difficult to understand as the inter-relationships betwierrules are represented
explicitly and concisely. A widely used approach to consfing decision lists is
the covering algorithm [4]
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set rule list to enpty
DO
find a good rule
add the rule to the |ist
renove cases covered by the rule
UNTIL no new rul es found
add default rule to rule list

Perhaps the best known example of a decision list algorih@N2 [5]. In a
rule list constructed in this fashion, the first rule covérs majority of cases. An
initial default rule for the most common class might offeradternative approach
to rule construction. This could offer compression of theesif the rule list and
a speed-up in the construction process if we can take acafuhé default rule
during learning. Such an approach can be implementaatdpending new rules
[6] using the algorithm

add default rule to I|ist
DO
find best rule for unclassified and
m scl assi fi ed exanpl es
add it to front of Iist
UNTIL no new rul e can be found
Results are reported which offer comparable accuracy taldmsical covering
algorithm but with shorter rule lists.

Another approach is BBG [7] which adds a default rule to tkeiiiitially and
then generates subsequent best rules for each class atidmddie difference is
the testing of all positions for each new rule. The algoriienreported to outper-
form C4.5 and C4.5 rules on artifical data sets but to perfess ell on a small
number of data sets from the UCI Repository [8]. There is magarison with the
standard covering algorithm approach.

This paper proposes a new decision list induction algorithenpend, that we
expect to deliver compact rule lists with minimal compudati

2 Proposed Approach to Decision List Construction

The general approach in this work is to aim for rule list coegsion by use of a
default rule for the most common class and to prepend rul&sgdist as excep-
tions to the default class. The main part of the work will istigate generating
new rules for every possible class at every possible irseposition to construct
reasonably optimal (but not guaranteed to be globally cgldimule lists. Another
approach to be investigated is to find the best rule which trbghprepended to
the list and to investigate other insertion positions withmodifying the rule. The
intent being to insert the rule in the best position chootiregdeeper of equal best
positions. The last approach will be to investigate rulesafbclasses but only for
the insertion position just before the default rule.

The fact that we need different rules at different inserpositions can be justi-
fied by noting that the rule training sets depend on the tatges and the insertion



position because, for any given new rule

e examples of the target class which are not yet corrrecthsdiad below the
insertion point must be retained

e training examples of the target class which are correctiggified by rules
below the insertion point can be excluded as accidentalseiiog them
twice has no effect on accuracy.

¢ counter-examples, not of the target class, which are nssifiad by rules
below the insertion point may be excluded, as long as thetrari®n strat-
egy will attempt to cover these by a rule inserted closer #&ftant of the
list. The basic strategy (labelled enulti) will include these examples and
an adaption (labelled cmulti/a) will exclude them.

e counter-examples which are correctly classified by rulésvbthe insertion
point must be kept so that the new, earlier rule will not aentdlly overlap
the cover of a deeper rule and possibly misclassify thesggoi

This work will compare a basic covering strategy as implet@eéinm CN2 with
the multiple insertion point strategy, the prepending asptieas possible strat-
egy and the insertion just before the default rule strat@&tpg software will be
constructed by modifying CN2 in several different ways bluteg's construct-
ing ordered rules. CN2 stops when all the examples are cdaere there is no
default rule. CN2 supports partial matching of cases withsing values and this
would complicate the conceptualisation and implememntatifoour various strate-
gies and, to simplify the treatment of missing values, eXaswill be counted as
covered by any test on a missing attribute. This can be eegéoctplace the vari-
ous new implementations at a disadvantage to the native GldZecond version,
called CNx which will not handle partial matching, will be plemented to give a
better comparison with the other algorithms. This apprpatprepending rules,
will magnify the problem of using small disjuncts since these placed before
the rules with best support. To minimise this problem, a sitog citerion will be
introduced which requires the list, after the latest rulmserted, to have signifi-
cantly better accuracy(<= 0.05, z test) than the prior list. The versions will be
compared by running them on matched data sets and compagigptedictive
accuracies and the lengths of the decision lists induced.

The MULTI variant (cnmulti) will examine all potential new rules for all posi-
tions, preceding the default rule, in a decision list whichnitialised with a default
rule for the majority class in the training set. The metricrfteasuring the quality
of each insertion position will be the classification accyraf the whole list. The
stopping condition will be when no rule can be found which ioyes the pre-
dictive accuracy of the whole list. A potential rule whichiriserted into the list,
may overlap a previously constructed rule later in the list misclassify examples
which were previously correctly classified, will be rejetturing rule induction
because it reduces the accuracy of the list. The prependirignt (cnpre) will
also construct ordered rules but the new rules will be cantd for only for the
first position in the list although, once constructed, il @ tested in every possi-
ble insertion position and eventually inserted as deeppoasible, consistent with
best performance, in the list. The penpending variani@n) only constructs the



rules for the penultimate position, in front of the defauwiterand only tests the
rules in this single position.

3 Experimental Method

Twenty eight well known data sets from the UCI repositorywj] be used for the
experimental comparison of the performance of
¢ CN2: CN2in its native format producing ordered rules, thgpatis labelled
as CN2.
e CNx: CN2 with a modification which disables partial coveritige output
labelled as CNx.
e cn_multi: the output of the multi variant, with output labellad MULTI.
e cn.multi/a: the output of comulti but with the modification, noted in section
2, to training set construction and the output labelled ad Mi4.
e cnpre: the prepending variant output is labelled as PRE.
e cnpen: the penpending variant output is labelled as PEN
For each data set, the examples are shuffled and partitiotettaining (80%)
and test (20%) sets. All six decision list construction ailfpons are run on these
two ordered sets of items and the classification accuracyistridngth on the test
set is noted. This procedure is repeated 20 times for eaalsdat

4 Results
4.1 Accuracy

The average accuracy of each algorithm on each of the dates stown in Table 1
below.

In Table 2 the win:draw:loss (respectively and where wiristhe left name)
ratios for the pairs of algorithms are shown as well as theifsignce using a sign
test. CN2 is seen to be significantly {at.= 0.05) better than CNx and MULTI/a
and close to significantly better than PEN. While this is migtal, it needs to be
recalled that the ability to handle partial covering hasrbeemoved from CN2
when we modified the algorithm for these experiments. Thiemihce between
CN2 and CNx gives some measure of how much damage was done @\
algorithm by this change and it is clearly substantial. Hasvethe main purpose
was to compare the other algorithms with CNx which is a versibCN2 which
is denatured to the same extent in all the various implentient&a

Comparing CNx with the other algorithms, there is no sigaificdifference
between it and MULTI, PRE and PEN but the superiority to MUAETIs sig-
nificant. Comparing MULTI with MULTI/a, PRE and PEN, therens signifi-
cant difference between them. Similarly, there is no sigaift difference between
MULTI/a and PRE or PEN and no significant difference betweRERnd PEN.

From these results it would seem that MULTI/a offers the wpesformance
in terms of accuracy. The performance of PRE and PEN seerstimgiiishable



Domain CN2 | CNx | MULTI | MULTl/a | PRE| PEN
allbp : 96.4 | 96.3 | 96.0 95.9 95.9| 95.9
anneal: | 93.0| 77.2| 974 98.2 98.6| 98.1
audio : 69.1 | 69.0| 76.1 76.9 78.2| 74.6
balance: | 81.3 | 81.3 | 67.9 64.3 67.9| 64.3
bf : 91.1| 911 | 88.7 82.8 85.8| 78.9
big-pole-a:| 84.6 | 84.6 | 56.1 56.1 56.1| 56.1
echocardio:| 67.8 | 63.4 | 67.9 67.9 67.9| 67.9
ecoli: 79.4 | 794 | 80.8 80.9 81.0( 81.3
glass: 62.3 | 62.3 | 69.8 65.7 68.3| 66.5
heart-clev:| 749 | 749 | 725 72.5 725|725
heart-hung: 75.4 | 74.9 | 76.6 76.6 76.6| 76.6
hepatitis: | 79.9 | 81.3 | 78.9 78.9 78.9| 78.9
hypo : 99.1 | 98.9 | 99.0 98.6 98.9| 97.9
iris : 94.1 | 94.1 | 93.7 93.5 94.0| 93.9
oringe : 728 | 72.8 | 68.3 75.8 68.3| 75.8
oring b : 64.3 | 64.3| 54.8 58.2 57.1| 58.2
page-block: 87.4 | 87.4| 90.0 86.7 89.4| 87.4
satimage: | 90.9 | 90.9 | 89.8 91.1 88.2| 91.3
segment: | 94.8 | 94.8 | 92.7 94.7 88.8| 94.3
shuttle: | 100.0| 100.0| 99.9 99.9 99.8| 99.9
sonar : 75.0| 75.0| 654 65.4 65.4| 65.4
soya: 85.5| 84.7 | 84.2 82.8 83.6| 84.4
thyroid : 96.3 | 96.2 | 96.1 96.1 96.1| 96.1
vehicle : 80.6 | 80.6 | 79.0 77.6 74.0| 76.7
votes : 935| 935 | 914 91.4 91.4( 914
waveform:| 70.9 | 70.9 | 68.0 67.5 67.2| 67.3
wine : 87.4 | 87.4| 882 84.8 90.1| 85.2
yeast : 52.3 | 52.3 | 56.2 49.7 55.3| 49.8
Table 1: Average Accuracy of Algorithms

and while MULTI has some perceptible advantage, it is natifitantly superior
to either. The denatured version of CN2 cannot offer clebditer performance
than MULTI, PRE or PEN. Thus, apart from rejecting MULTI/hete is little to



versus CNx MULTI | MULTIl/a PRE PEN
CN2 8:19:1 | 19:0:9 20:0:8 19:0:9 | 19:1:8
p=0.039| p=0.087| p=0.036 | p=0.087| p=0.052

CNx 18:0:10| 20:0:8 18:1:9 | 19:1.8
p=0.185| p=0.036 | p=0.122| p=0.052

MULTI 12:9:7 | 12:10:6| 11:9:8
p=0.359 | p=0.230| p=0.648

MULTI/a 7:9:112 | 7:13:8
p=0.359| p=1.0

PRE 10:9:9
p=1.0

Table 2: Comparison of Accuracy of Algorithms

choose, on the basis of accuracy, between CNx, MULTI, PREP&.

4.2 List Compression

Table 3 shows the average length of the decision lists agetstl by the various
algorithms. In Table 4 the win:draw:loss (respectively anre win is for the left
name) ratios for the pairs of algorithms are shown as wehasignificance using
a sign test. It is easily seen that MULTI, MULTI/a, PRE and P&Nyield list
lengths which are obviously and statistically significaéiss than those of CN2
and CNx. MULTI is significantly better than MULTI/a and PENtmpot signifi-
cantly different from PRE. MULTI/a, PRE and PEN are not siigaintly different
from each other. It clearly matches expectation that MUIddd be better than
PRE or PEN because of the more thorough nature of its sear¢hddest next
rule. It also is expected that MULTI/a should produce lorigts since, by exclud-
ing some examples from the training set, it is commiting terd@nsertion of extra
rules to correct any errors resulting from such exclusions.

5 Conclusions

This work set out to investigate approaches to buildingsiesilists which involved
using a default rule for the majority class and various sgigs for constructing the
remainder of the rule list. The strategies compared were &ip2nding to the list,
CNx appending to the list but having the CN2 partial matcHamdlity removed,
MULTI which searches through the best rule for every classviary position,
MULTI/a which incorporates an adaptation to the constarcif training sets,



Domain | CN2 | CNx | MULTI | MULTl/a | PRE| PEN
allbp 26.6 | 215 6.2 6.3 6.3 | 6.3
anneal 16.9 | 8.2 10.9 11.4 11.6| 11.8
audio 212 | 214 14.7 22.8 12.9| 195

balance | 56.4 | 56.4 6.3 5.4 6.3 | 54
bf 94.8 | 94.8 19.2 21.6 16.2 | 19.5
big-pole-a | 184.7| 184.7| 5.1 5.1 51| 5.1
echocardio| 14.6 | 11.8 35 3.5 35| 35
ecoli 189 | 189 11.8 14.2 13.2| 13.7
glass 15.7 | 15.7 9.9 111 10.2| 111
heart-clev| 17.3 | 17.3 4.0 4.0 40 | 4.0
heart-hung| 19.4 | 18.0 3.5 3.5 35| 35
hepatitis | 11.6 | 8.0 3.7 3.7 3.7 | 3.7
hypo 17.0 | 13.2 10.2 8.0 841 79
iris 5.9 5.9 3.7 3.8 3.6 | 3.8
oring.e 35 3.5 3.2 3.2 34 | 3.2
oring_b 4.0 4.0 4.1 3.9 42 | 3.9
page-block| 9.9 9.9 6.7 7.8 68 | 7.3
satimage | 7.6 7.6 6.9 7.2 71| 7.3

segment | 22.9 | 22.9 14.2 195 15.8| 19.8
shuttle 9.8 9.8 10.6 10.4 8.3 | 11.3

sonar 9.7 9.7 3.5 3.5 35| 35
soya 24.2 | 23.4 23.1 22.5 24.0| 21.1
thyroid 219 | 174 5.0 51 51| 5.1
vehicle 6.7 6.7 6.1 6.2 6.7 | 6.2
votes 154 | 154 4.3 4.3 43 | 4.3
waveform | 6.1 6.1 4.9 54 54| 54
wine 4.8 4.8 3.8 4.0 40 | 4.0
yeast 84.7 | 84.7 17.1 18.5 16.5| 17.9
average | 26.9 | 25.8 8.1 8.8 8.0 | 85

Table 3: Average Lengths of Lists

PRE which constructs a prependable rule but inserts it aglyglé@®o the list as
possible without losing accuracy and PEN which construetg ules which can
be inserted just before the default rule. Only the MULTI afrBstrategies could
achieve accuracies which were not significantly worse tham of CN2. How-
ever, both MULTI and PRE provided significantly shorter dem lists than CN2.
Although no direct measure was taken of the speed, it is th@aPRE which only



versus CNx | MULTI | MULTl/a | PRE PEN
CN2 1:19:8 | 2:0:26 | 2:0:26 | 1:1:26 | 1.0:27

p<0.05| p<0.01| p<0.01 | p<0.01]| p<0.01

CNx 3:0:25 | 3:0:25 | 3:1.24 | 2:0:26

p<0.01| p<0.01 | p<0.01]| p<0.01

MULTI 15:8:,5 | 14:8:6 | 16:8:4
p<0.05 | p>0.10| p<0.05

MULTI/a 7:11:10| 4:17:7
p>0.25| p>0.25

PRE 11:11:6

p>0.25

Table 4: Comparison of Length of Lists

constructs rules for a single position before trying vasignsertion positions is
substantially quicker than MULTI which constructs all pibgs rules in all possi-
ble positions. Since this was a research implementatioatteonpt was made to
make the algorithm efficient so actual compute times hatle tiélevance.

Within the constraints of the design of these experimehts adaption to the
construction of training sets (amulti/a) has proven not to be valuable. However,
the notion of using an initial default rule and prependinigeotrules has proven
to result in decision lists which are significantly shorteat CN2 while offering
comparable classification accuracy. The MULTI strategysthoffer reasonably
optimal results because of its nature and is comparabletiwer@N2 despite hav-
ing an inbuilt disadvantage in not handling partial covgrin

It is desirable that a future study investigate how oftenRR¥ strategy places
a rule in a deeper position to understand whether the eximplexity in rule
construction, relative to a pure prepending strategy, iglwehile.
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