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Abstract. Kernel density estimation (KDE) is an important method in
nonparametric learning. While KDE has been studied extensively in the
context of accuracy of density estimation, it has not been studied exten-
sively in the context of classification. This paper studies nine bandwidth
selection schemes for kernel density estimation in Naive Bayesian clas-
sification context, using 52 machine learning benchmark datasets. The
contributions of this paper are threefold. First, it shows that some com-
monly used and very sophisticated bandwidth selection schemes do not
give good performance in Naive Bayes. Surprisingly, some very simple
bandwidth selection schemes give statistically significantly better per-
formance. Second, it shows that kernel density estimation can achieve
statistically significantly better classification performance than a com-
monly used discretization method in Naive Bayes, but only when appro-
priate bandwidth selection schemes are applied. Third, this study gives
bandwidth distribution patterns for the investigated bandwidth selection
schemes.

1 Introduction

A critical task in Bayesian learning is estimation of the probability distributions
of attributes in datasets, especially when the attributes are numeric. Tradition-
ally, the numeric attributes are handled by discretization [1]. These methods are
usually simple and computationally efficient. However, they suffer from some
basic limitations [2, 3]. An alternative to calculating probability estimates for
numeric attributes using discretized intervals is to estimate the probabilities di-
rectly, using an estimate of the point-wise density distribution. Both parametric
and nonparametric density estimation methods have been developed.

Parametric density estimation imposes a parametric model on the obser-
vations. For example, the parameters for a Gaussian model are its sufficient
statistics, the mean and variance. Normally simple parametric models do not
work very well with Bayesian classification [4], as the real distributions do not
exactly fit specific parametric models.

Some estimation methods, including Gaussian mixture models, use subsets
of the data to obtain local fitting models, then mix these models to obtain the



density estimate for all observations. In contrast, Kernel Density Estimation
estimates the probability density function by imposing a model function on ev-
ery data point and then adding them together. The function applied to each
data point is called a kernel function. For example, a Gaussian function can be
imposed on every single data point, making the center of each Gaussian ker-
nel function the data point that it is based on. The standard deviation of the
Gaussian kernel function adjusts the dispersion of the function and is called a
bandwidth of the function.

Given sufficiently large sample data, KDE can converge to a reasonable esti-
mate of the probability density. As there are no specific finite parameters imposed
on the observations, KDE is a nonparametric method.

The univariate KDE [5, 6] can be expressed as:

f(x) =
1

nh

n∑

i=1

K
(

x−Xi

h

)
, (1)

where K(.) is the density kernel; x is a test instance point; Xi is a training
instance point, which controls the position of the kernel function; h is the
bandwidth of the kernel, which controls the dispersion of each kernel; and n
is the number of data points in the data. For a univariate Gaussian kernel
K(ξ) = 1√

2π
e−

ξ2

2 .
Naive Bayes is a widely employed effective and efficient approach for classifi-

cation learning, in which the class label y(x) of a test instance x is evaluated by
y(x) = argmax c

[
P (c)×∏d

i=1 P (xi | c)
]

, where P (c) is a class probability, d
is the number of attributes, xi is the i’th attribute of instance x, and P (xi | c) is
the probability (or probability density) of xi given the class. KDE (Equation (1))
can be used to estimate the class conditional probabilities for numeric attributes.
Because the Naive Bayesian classifier considers each attribute independently, we
use only univariate kernel density estimation in this paper.

It is known that the specific choice of kernel function K is not critical [7]. The
key challenge is the choice of the bandwidth. A bandwidth value which is too
small will give a too detailed curve and hence leads to an estimation with small
bias and large variance. Large bandwidth leads to low variance at the expense
of increased bias.

Many bandwidth selection schemes in kernel density estimation have been
studied mainly for optimizing the mean squared error loss of the estimation which
supports good density curve fitting. However, bandwidth selection schemes are
still not extensively studied in the classification context applying 0-1 loss criteria.

We look at the seven most commonly used bandwidth selection schemes in
the statistical community plus two very simple schemes, using 52 datasets. It
is shown that the choice of bandwidth dramatically affects the accuracy results
of classification. An appropriate bandwidth selection scheme can archive sta-
tistically significantly better classification performance than a commonly used
discretization method. Surprisingly, the two simple bandwidth selection schemes
both achieved good performance, whereas the more sophisticated and compu-



tationally expensive schemes delivered no improvement in classification perfor-
mance.

2 Bandwidth Selection Schemes

Background Intuitively, it is assumed that there is a positive correlation be-
tween the accuracy of the probability estimates and the accuracy of classification.
Friedman [8] challenged this assumption and states that more accurate proba-
bility estimates do not necessarily lead to better classification performance and
can often make it worse.

Unfortunately, most bandwidth selection research considers the assumption
to be true and attempts to achieve the highest possible probability estimation
accuracy. These schemes are often based on a mean squared error (MSE) criteria,
instead of a 0-1 loss criteria.

To the best of our knowledge, there is no practical bandwidth selection
scheme that focuses on improving the classification accuracy, rather than the
accuracy of the probability estimates. A recent paper [9] explores the theory of
bandwidth choice in classification under limited conditions. It states that the
optimal size of the bandwidth for 0-1 loss based estimation is generally the same
as that which is appropriate for squared error based estimation.

Generally speaking, KDE bandwidth choice in the context of classification
under 0-1 loss is a more difficult one compared with bandwidth choice under
MSE loss. For example, we consider using Cross-Validation to chose optimal
bandwidths in Naive Bayes, using class labels as the supervised information.
Every evaluation under 0-1 loss (according to the class label) should use all
attributes in the dataset. This is a global optimization problem in which the op-
timal bandwidth for one attribute may interact with those for other attributs. It
is different to the MSE criteria which only uses the attribute under consideration.

In this section we give some theoretical descriptions of the mean squared
error criteria and describe 7 bandwidth selection schemes that are based on this
criteria. We also discuss two schemes which are not theoretically related to MSE.

Mean Squared Error Criteria In probability density estimation, the Mean
Squared Error (MSE) or Mean Integrated Squared Error (MISE) are the most
used density estimation error criteria,

MISE(f̂) = E

∫
[f̂(x)− f(x)]2dx , (2)

where integral is in the range of x, to measure how well the entire estimated curve
f̂ approximates the real curve f . The expectation operation averages over all pos-
sible samplings. From this equation, we can get MISE(f̂) =

∫
Bias2[f̂(x)]dx +∫

V ar[f̂(x)]dx , where Bias[f̂(x)] = E[f̂(x)]−f(x) and V ar[f̂(x)] = E[f2(x)]−
E2[f̂(x)]. This equation is the starting point of the bandwidth selection scheme
UCV we discuss below.



We process E[f̂(x)] first by using Equation (1). This leads to E[f̂(x)] =
E

[
1
n

∑n
i=1

1
hK(x−Xi

h )
]

= E
[

1
hK(x−X

h )
]

=
∫

1
hK(x−y

h )f(y)dy, where for each
test point x, we regard each Xi as an independent and identically distributed
random variable with distribution f . Making a simple variable substitution
y = x−ht, we obtain: Bias[f̂(x)] =

∫
K(t)[f(x− ht)− f(x)]dt . A Taylor series

expansion f(x− ht) ≈ f(x)− htf ′(x) + 1
2h2t2f ′′(x) can be substituted into this

equation. The first term of f(x−ht) is canceled out by the negative f(x). The sec-
ond term is also canceled out because the K(t) in the integral is a symmetric func-
tion. So,

∫
Bias2[f̂(x)]dx ≈ 1

4h4(
∫

t2K(t)dt)2
∫

(f ′′(x))2dx = 1
4h4µ2

2(K)R(f ′′) ,
where R(g) =

∫
g2(x)dx and µ2(g) =

∫
x2g(x)dx .

In a similar way, we can get, V ar[f̂(x)] = 1
nhR(K) . The elementary Equa-

tion (2) becomes an asymptotic form, as the error term in Taylor expansion is
the higher-order term of h, which monotonously decreases when samples grow.
The asymptotic mean integrated squared error is,

AMISE =
1

nh
R(K) +

1
4
h4µ2

2(K)R(f ′′) . (3)

This equation is the starting point for the bandwidth selection schemes BCV,
STE and DPI, which are discussed below.

Unbiased Cross-Validation (UCV) Scheme The method of Unbiased Cross-
Validation [10] is based on the elementary Equation (2). It is also called least
squares cross-validation. UCV obtains a score function to estimate the per-
formance of candidate bandwidth. In practice, UCV minimizes the integrated
square error, the Equation (4), which uses one realization of samples from un-
derlaying distribution f.

ISE =
∫

[f̂(x)− f(x)]2dx = R(f̂)− 2
∫

f̂(x)f(x)dx + R(f) , (4)

where R(g) is similar to Equation (3).
Notice the first term in Equation (4) is only related to the estimated f̂(x), so

it is easy to process given a specific bandwidth ĥ. The third term is independent
of the estimated ĥ and remains constant for all estimations, so it can be ignored.
The second term can be written as

∫
f̂(x)f(x)dx = E[f̂(x)], i.e., it is the statistic

mean of f̂(x) with respect to x.
If we get n samples of x, for the sake of obtaining a stable estimation of

E[f̂(x)], we can use a Leave-One-Out method to get an n-points estimation
value of the f̂(x). The Leave-One-Out method estimates the value of f̂(xi) by
leaving the xi out and using the other n-1 points of x. This is why this method
is called a Cross-Validation. We use f̂−i(xi) to express this Leave-One-Out esti-
mation, which is evaluated from Equation (1). Then, E[f̂(x)] = 1

n

∑n
i=1 f̂−i(xi).

Substituting this to Equation (4) we construct a score function in the sense of
ISE. Now for some specific candidate bandwidth ĥ, we can give a unbiased cross



validation score for the candidate bandwidth ĥ as,

UCV (ĥ) = R(f̂)− 2
n

n∑

i=1

f̂−i(xi) .

We can use a start bandwidth as a reference estimation, and make a brute-force
search near this reference bandwidth with respect to the minima of UCV score
function.

Normal Reference Density (NRD-I, NRD and NRD0) schemes Normal
Reference Density [5] scheme is also called the Rule of Thumb scheme. It is based
on Equation (3). To minimize AMISE, a simple first order differential can be
used on Equation (3) towards the bandwidth h and setting the differential to
zero. The optimal bandwidth is:

ĥAMISE =
[

R(K)
µ2

2(K)R(f ′′)

]1/5

n−1/5 . (5)

This result still depends on the unknown density derivative function f ′′(x), which
will depend on h recursively again. Normal Reference Density scheme simplifies
this problem by using a parametric model, say, a Gaussian to estimate f ′′(x).
Compared with the Cross-validation selection, this is a straightforward method
and can lead to an analytical expression of bandwidth ĥ = 1.06 σ̂n−1/5 , where
n is the number of samples and σ̂ is the estimated normal distribution standard
deviation of the samples.

This bandwidth selection scheme is a classic one. We use this bandwidth as
a standard bandwidth in our experiments. We call this scheme NRD-I.

A more robust approach [5] can be applied by considering the interquar-
tile range (IQR). The bandwidth is calculated from the minimum of standard
deviation and standard IQR: ĥ = 1.06min (σ̂, IQR/1.34)n−1/5 . This proce-
dure [5] helps to lessen the risk of oversmoothing. We call the bandwidth the
NRD bandwidth in this paper. A smaller version of NRD suggested in R [11] is
ĥ = 0.9min (σ̂, IQR/1.34)n−1/5 . We call this bandwidth the NRD0.

Biased Cross-Validation (BCV) Scheme Biased cross-validation uses Equa-
tion (3) as the basis of the score function. Scott and Terrel [12] develop an es-
timation of R(f ′′) in Equation (3), using R̂(f ′′) = R(f̂ ′′) − 1

nh5 R(K ′′) , where
f ′′, f̂ ′′ and K ′′ are second-order derivatives of distribution and kernel respec-
tively. The right hand side of this estimation can be evaluated given a specific
bandwidth ĥ. Substituting the R̂(f ′′) to Equation (3), we can get a new score
function,

BCV (ĥ) =
1

nh
R(K) +

1
4
h4µ2

2(K)[R(f̂ ′′)− 1
nh5

R(K ′′)] .

A exhaustive search procedure similar to UCV scheme can be applied to find
the optimal bandwidth.



Direct-Plug-In (DPI) Scheme and Solve-The-Equation (STE) Scheme
The Direct-Plug-In scheme [13] is a more complicated version of the Normal
Reference Density scheme. It seeks R(f ′′) by estimation of R(f ′′′′). This problem
continues because the R(f (s)) will depend on R(f (s+2)). Normally, for a specific
s, R(f (s+2)) is estimated by a simple parametric method, to obtain R(f (s)) and
so on. We call Direct-Plug-In Scheme the DPI in our experiments.

Notice that Equation (5) is a fixed point equation h = F (h), where F (h) =[
R(K)

µ2
2(K)R(f ′′)

]1/5

n−1/5 . and R(f ′′) is a function of h. Solve-The-Equation Scheme
[6, 13] is applied by solving the fixed point of F (h). We call Solve-The-Equation
scheme the STE in our experiments.

Two Very Simple (WEKA and SP) Schemes We use two very simple
bandwidth selection schemes. These two schemes are both based on the range
of data divided by a measure of the size of the samples. There is less theoretical
consideration [4, 14, 15] of these methods compared with the other methods
discussed above. They merely conform to the basic requirement in KDE that
when the number of samples approaches infinity, the bandwidth approaches zero.

One scheme uses
√

n as a division factor [4], so the bandwidth approaches
zero as n increases,

ĥ =
range(x)√

n
,

where n is the number of samples, range(x) is the range of values of x in training
data. This scheme is used in WEKA [14], with some calibration that ĥ should be
no less than 1

6 of the average data interval, which avoids ĥ becoming too small
compared with the average data interval. We call this scheme WEKA.

The other scheme is a very old scheme[16].

ĥ =
range(x)

2(1 + log2n)
.

The basic principle of this equation does not have very strong theoretical basis
[15]. However it was widely used in the old version of S-PLUS statistic package
(up to version 5.0) [17, page 135]. We call it the SP scheme.

3 Experiments

3.1 Data and Design

In addition to the nine bandwidth selection schemes described in Section 2,
the widely used MDL discretization method [1] was also used as a performance
reference. The Naive Bayesian classifier was the classifier used for all schemes
being evaluated. Every statistic sample (every dataset, every experiment trial
and fold) and every piece of classifier code is the same for all schemes. The only
difference between each scheme in the classifier algorithm is the bandwidth of
the kernel.



Table 1. The 52 experimental datasets, with the numbers of instances, classes, at-
tributes and numeric attributes.

Data Ins. Cls. Att. NAtt. Data Ins. Cls. Att. NAtt.
Abalone 4177 3 8 8 Letter 20000 26 16 16
Adult 48842 2 14 6 Liver-disorders 345 2 6 6
Anneal 898 6 38 6 Lymph 148 4 18 3
Arrhythmia 452 16 279 206 Mfeat-factors 2000 10 216 216
Autos 205 7 25 15 Mfeat-fourier 2000 10 76 76
Backache 180 2 32 6 Mfeat-karhunen 2000 10 64 64
Balance-scale 625 3 4 4 Mfeat-morphological 2000 10 6 6
Biomed 209 2 8 7 Mfeat-zernike 2000 10 47 47
Cars 406 3 7 6 New-thyroid 215 3 5 5
Cmc 1473 3 9 2 Optdigits 5620 10 64 64
Collins 500 15 23 20 Page-blocks 5473 5 10 10
German 1000 2 20 7 Pendigits 10992 10 16 16
Crx(credit-a) 690 2 15 6 Prnn-synth 250 2 2 2
Cylinder-bands 540 2 39 18 Satellite 6435 6 36 36
Diabetes 768 2 8 8 Schizo 340 2 14 12
Echocardiogram 131 2 6 5 Segment 2310 7 19 19
Ecoli 336 8 7 7 Sign 12546 3 8 8
Glass 214 7 9 9 Sonar 208 2 60 60
Haberman 306 2 3 2 Spambase 4601 2 57 57
Heart-statlog 270 2 13 13 Syncon 600 6 61 60
Hepatitis 155 2 20 6 Tae 151 3 5 3
Horse-colic 368 2 21 8 Vehicle 846 4 18 18
Hungarian 294 2 13 6 Vowel 990 11 13 10
Hypothyroid 3772 4 29 7 Waveform-5000 5000 3 40 40
Ionosphere 351 2 34 34 Wine 178 3 13 13
Iris 150 3 4 4 Zoo 101 7 17 1

The fifty-two datasets used in the experiments were drawn from the UCI
machine learning repository [18] and the web site of WEKA [14]. We use all the
datasets that we could identify from these places, given the dataset has at least
one numeric attribute and has at least 100 instances. Table 1 describes these
datasets. Any missing values occurring in the data for numeric attributes were
replaced with the mean average value for that attribute.

Each scheme was tested on each dataset using a 30-trial 2-fold cross validation
bias-variance decomposition. A large number of trials was chosen because bias-
variance decomposition has greater accuracy when a sufficiently large number of
trials are conducted [19]. Selecting two folds for the cross-validation maximizes
the variation in the training data from trial to trial.

Thirty trials and two folds yields sixty Naive Bayesian classification evalua-
tions for each dataset. For these evaluations we recorded the mean training time,
mean error rate, mean bias and mean variance. Kohavi and Wolpert’s method
[20] of bias and variance decomposition was employed to determine the bias and
variance based on the obtained error rate.

Since there are nine alternative KDE classifiers and one discretization clas-
sifier, we get ten comparators of the performance measure for each dataset.

After the classification performance comparison, we also produce a statistic
for the bandwidth distribution for alternative bandwidth selection schemes. The
fifty-two datasets contain 1294 numeric attributes collectively. Every numeric at-
tribute has at least two and at most 26 class labels. Since we evaluate the KDE
for every class conditional probability, there are 10967 class conditional proba-



bility evaluation objects. Each of these evaluation objects produces 60 different
realization samples by the 30 trails 2 fold cross-validation. Every bandwidth
selection scheme is applied to each realization of the conditional probability
evaluation objects, and produces an estimated bandwidth for that realization.

These bandwidths are transformed to a ratio to a standard bandwidth. We
use the NRD-I bandwidth as the standard. By using these bandwidth ratios, we
get a statistical distribution of the bandwidth size for each scheme.

3.2 Observations and Analysis

Classification Error, Bias and Variance We use Friedman’s method [21]
to rank classification error, bias and variance. The scheme that performs the
best is ranked 1, the second best is ranked 2 and so forth. The mean rank of
classification accuracy and time measure (real time) are summarized in Figure 1
as the shaded bars. Since the bandwidth calculations are carried out during
training, the computational time for the test stage is essentially the same for all
schemes and therefore is not reported.

A win/tie/lose record (w/t/l) is calculated for each pair of competitors A and
B with regard to a performance measure M. The record represents the number
of datasets in which A wins loses or ties with B on M. The win/tie/loss records
are summarized in Table 2.

We also apply statistical comparison methods of multiple classifiers over mul-
tiple data sets recommended by Demsar [22].

The null hypothesis was rejected for all Friedman tests (using the 0.05 critical
level) conducted on error, bias and variance, so we can infer that there exists
significant difference among all ten schemes.

Having determined that a significant difference exists, the post-hoc Nemenyi
test was used to identify which pairs of schemes differ significantly. The results
of this test(using the 0.05 critical level) are illustrated by the line segments
accompanying each bar in the graph in Figure 1. The length of these lines indicate
the critical difference, and the performance of two methods are considered to be
significantly different if the difference between their mean rank is greater than
the critical difference (i.e. their vertical line segments do not overlap).

Figure 1 and Table 2 show that the more sophisticated bandwidth selection
schemes investigated do not yield improved performance over simpler schemes,
although they are far more computationally expensive. The poorest performer
was BCV, which was statistically significantly worse than the more simplistic
SP scheme (with w/t/l record 15/1/36 ) and WEKA scheme (with w/t/l record
11/0/41). UCV was also determined to be statistically significantly worse than
the SP scheme (with /w/t/l record 18/0/36). The computational time costs of
the four sophisticated schemes are far more than the others.

The UCV scheme achieved low bias, but high variance, as stated by its name.
Conversely, BCV achieved low variance, but high bias. Neither the SP scheme’s
bias nor its variance was particularly high or low, and it was found to be sta-
tistically significantly better than the discretization method and the two worst
sophisticated bandwidth selection schemes, UCV and BCV. This analysis shows
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Fig. 1. Comparison of alternative methods’ mean ranks of classification accuracy. Clas-
sification error can be decomposed into bias and variance. The shaded bars illustrate
the mean rank and the smaller rank has the better performance. The line segments
accompanying each bar indicate the Nemenyi test results. The performance of two
methods are statistically significantly different if their vertical line segments are not
overlapping. The mean training time is real time of computation.

that the choice of bandwidth dramatically affects the accuracy results of classi-
fication. The more sophisticated schemes can not guarantee good classification
performance. Trade-off between bias and variance performance is essential to
improve upon classification accuracy.

This analysis also shows that only one bandwidth selection scheme (the
SP scheme) gives statistically better performance than a classical discretiza-
tion method. It suggests that KDE can achieve statistically significantly better
performance in classification, but the bandwidth selection schemes in classifica-
tion behave different with traditional sophisticated bandwidth selection schemes.
More theoretical researches are needed for kernel density estimation in classifi-
cation.

Distribution of the Bandwidth The distribution of the bandwidth size for
each scheme is illustrated in Figure 2. By comparing Figure 1 and Figure 2 we
can see that the bandwidth of BCV and WEKA is statistically larger than others.
This gives them a small variance and large bias in classification. By contrast,



Table 2. Comparison of rival schemes’ win/tie/lose records with regard to classification error, bias
and variance. Each three-number entry indicates the number of times the scheme named in the row
wins, ties and loses against the scheme named in the column. A statistically significant record (at
the 0.05 critical level) is indicated in a bold face.

(a) ERROR

w/t/l DIS NRD-I NRD NRD0 SP UCV BCV STE DPI
NRD-I 32/0/20
NRD 30/0/22 22/1/29
NRD0 28/0/24 22/0/30 25/1/26
SP 33/0/19 32/0/20 34/2/16 34/0/18
UCV 24/0/28 21/0/31 17/0/35 17/0/35 14/0/38
BCV 26/0/26 9/0/43 15/0/37 16/1/35 15/1/36 23/0/29
STE 25/1/26 19/0/33 23/0/29 25/0/27 18/0/34 33/1/18 29/0/23
DPI 28/1/23 23/1/28 21/0/31 22/1/29 16/1/35 31/1/20 30/0/22 24/1/27
WEKA 32/0/20 26/0/26 31/0/21 28/1/23 23/1/28 30/0/22 41/0/11 30/1/21 29/1/22
(b) BIAS

w/t/l DIS NRD-I NRD NRD0 SP UCV BCV STE DPI
NRD-I 22/0/30
NRD 25/1/26 31/1/20
NRD0 26/0/26 34/1/17 33/0/19
SP 28/0/24 39/0/13 37/0/15 33/0/19
UCV 27/0/25 32/0/20 29/0/23 31/1/20 27/0/25
BCV 19/0/33 12/0/40 12/0/40 9/0/43 8/0/44 13/0/39
STE 28/0/24 35/0/17 32/0/20 30/0/22 28/1/23 26/0/26 45/1/6
DPI 29/0/23 35/1/16 33/0/19 31/0/21 20/0/32 20/1/31 44/0/8 18/0/34
WEKA 27/0/25 26/0/26 25/0/27 21/0/31 15/0/37 20/0/32 40/0/12 16/1/35 21/0/31
(c) VARIANCE

w/t/l DIS NRD-I NRD NRD0 SP UCV BCV STE DPI
NRD-I 37/1/14
NRD 34/0/18 8/1/43
NRD0 34/0/18 8/0/44 11/0/41
SP 32/0/20 14/0/38 26/0/26 30/0/22
UCV 20/0/32 3/0/49 5/0/47 5/0/47 7/0/45
BCV 32/0/20 16/3/33 31/0/21 36/0/16 29/1/22 46/0/6
STE 24/0/28 6/0/46 10/0/42 13/0/39 13/0/39 42/0/10 9/0/43
DPI 27/0/25 8/0/44 11/0/41 22/1/29 18/1/33 43/0/9 11/1/40 37/1/14
WEKA 36/0/16 23/0/29 36/0/16 39/0/13 35/2/15 48/0/4 33/1/18 46/0/6 42/0/10

NRD0, SP, STE and DPI tend to have smaller bandwidths. This gives them a
relatively small bias and large variance in classification. We can see that there
is a transition range (from approximately 0.5 to 1.5 times of NRD-I bandwidth)
that indicates a change in tendency of bias-variance trade off, from a low-bias
high-variance to a high-bias low-variance profile. This transition range is narrow.
This relatively narrow distribution range shows that classification performance
is more sensitive to the size of the bandwidth than was first thought.

4 Conclusions

The more simplistic and less computationally intensive bandwidth selection
schemes performed significantly better compared to some of the more sophis-
ticated schemes in Naive Bayesian Classification. A kernel density estimation
method can significantly outperform a classical discretization method, but only
when appropriate bandwidth selection schemes are applied.

Our experiments and analysis also show that an unsuitable bandwidth value
can easily give poor classification performance. In a relatively narrow distribu-
tion range, we find that the bias-variance trade off changes, from low-bias and
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Fig. 2. Distribution of the
size of bandwidth. X-axis
is the ratio of alternative
bandwidth to a standard
bandwidth. Y-axis is the
density of the ratio distribu-
tion. Standard bandwidth is
NRD-I.

high-variance to high-bias and low-variance. Comparison of the bandwidth dis-
tribution patterns with error performance suggests that bandwidths within the
range of 0.5 to 1.5 times NRD-I standard bandwidth are preferable.
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