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Abstract 
Input-Output Agent Modelling (IOAM) is an approach to modelling an agent in terms of 
relationships between the inputs and outputs of the cognitive system. This approach, together with 
a leading inductive learning algorithm, C4.5, has been adopted to build a subtraction skill modeller, 
C4.5-IOAM. It models agents’ competencies with a set of decision trees. C4.5-IOAM makes no 
prediction when predictions from different decision trees are contradictory. This paper proposes 
three techniques for resolving such situations. Two techniques involve selecting the more reliable 
prediction from a set of competing predictions using a free quality measure and a leaf quality 
measure. The other technique merges multiple decision trees into a single tree. This has the 
additional advantage of producing more comprehensible models. Experimental results, in the 
domain of modelling elementary subtraction skills, showed that the tree quality and the leaf quality 
of a decision path provided valuable references for resolving contradicting predictions and a single 
tree model representation performed nearly equally well to the multi-tree model representation. 

1 Introduction 
Inductive learning techniques provide approaches to building agent models in the form of 
knowledge acquisition by observing the agents’ behaviours. For example, they can be used in an 
intelligent tutoring system (ITS) to model a student’s competencies. They make hypotheses about a 
student’s knowledge of that problem domain. They learn theories, from examples, like many 
people do. Decision tree learning or rule learning provides the additional advantage of representing 
the acquired knowledge in explicit form such that people can interpret it. 
The use of inductive learning for agent modelling has been studied previously, eg. (Desmoulins 
and Van Labeke, 1996; Gilmore and Self, 1988). An induction based modelling system may 
require prohibitive resources for implementation if its inductive engine is tightly linked to the 
cognitive aspects of an agent. An Input-Output Agent Modelling (IOAM) approach allows a 
system to treat the operation of the cognitive system as a black box and models the operation in 
terms of the relationships between the inputs and outputs of the system. Therefore, a general-
purpose classifier learning algorithm can be employed as an induction engine. Examples of 
modelling systems which employ the IOAM approach include Feature Based Modelling (FBM) 
(Webb and Kuzmycz, 1996), Relational Based Modelling (Kuzmycz, 1995), FFOIL-IOAM and 
C4.5-IOAM (Chin et al., 1997). Note that they use different induction engines. C4.5-IOAM uses 
C4.5 (Quinlan, 1993), a well- known and general-purpose learning algorithm, as its induction 
engine. It has been used to model students’ competencies of elementary subtraction skills with a set 
of decision trees. Comparative evaluations of C4.5-IOAM against FBM (Webb et al., 1997) and 
FFOIL-IOAM (Chin et al., 1997) have shown that the use of C4.5 increased the number of 
predictions made without significantly altering the accuracy of those predictions. 
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However, C4.5-IOAM makes no prediction when the individual predictions from different decision 
trees are contradictory. If C4.5-IOAM is augmented by a mechanism for resolving conflicting 
predictions, it might make more predictions without affecting the prediction accuracy. Three 
techniques have been explored for this purpose. Two of them involve selecting the more reliable 
prediction from a set of competing predictions. The other technique merges multiple decision trees 
into a single tree. This approach offers the additional advantage of producing more comprehensible 
models. This paper presents an empirical study of how conflicting predictions can be resolved with 
these alternative techniques. 

2 An overview of C4.5-IOAM Subtraction Modeller 
The C4.5-IOAM subtraction modeller manipula tes an n-digit subtraction problem by treating it as 
n separate column problems. In this subtraction modeller, context features and action features, 
adopted from the FBM (Kuzmycz and Webb, 1992), are used to represent inputs and outputs. 
Context features describe the problems with which a student is faced. Action features describe 
aspects of a student’s actions for a particular problem. There are eleven action features:  
Result=M-S, Result=M-S-l, Result=l0+M-S, Result=10+M-S-1, Result=M, Result=S, Result=zero, 
Result=M-S 2, Result=l0+M-S-2, Result=S-M and Result=correct, where M and S stand for 
minuend and subtrahend digits respectively. Action features are not mutually exclusive. That is, a 
student’s action may correspond to more than one action feature. However, C4.5 requires mutually 
exclusive classes. Thus, C4.5-IOAM uses eleven decision trees to model different aspects of a 
student’s actions (behaviour). 
The context features of a unit problem are described by 12 attributes. The first four attributes, 
M_is_0, S_is_0, S_is_9 and S_is_BK (BK stands for blank), are self-explanatory. The rest of them 
are listed below with their meanings where N stands for Not Available. 

• M_vs_ S: {G, L, E}, M is greater (G) or less than (L), or equal (E) to S. 

• M_L_is_0: {T, F, N}, M in the column to the left is zero. 

• M_L_is_1: {T, F, N), M in the column to the left is one. 

• M_R_is_0: {T, F, N}, M in the column to the right is zero. 

• S_R_is_9: {T, F, N} S in the column to the right is nine. 

• M_S_R: {G, L, E, N}, similar to M_vs_S, but it describes the column to the right. 

• M_S_2R: {G, L, E, N}, similar to M_vs_S, but it describes two columns to the right. 

• Column : {L, I, R}, the current column is left-most (L), inner (I), or right-most (R). 
Figure 1 illustrates how 11 training examples, one for each decision tree, are formed from one 
single column problem. The context features, described by 12 attributes, are extracted based on the 
problem environment and applied to each example. At the inner column, M (minuend digit) is nine, 
S (subtrahend digit) is zero, and the student’s answer is nine. Two action features, Result=M-S, and 
Result=M, correspond to the student’s action. These two action features are, therefore, set as T. 
The other action features are set as F. One 3-digit subtraction problem will generate three training 
examples for each decision tree. After all examples of a student’s subtraction performance are 
processed, C4.5 is used to infer a decision tree for each training set. 
When C4.5-IOAM predicts a student’s answer for a problem, the problem context is extracted and 
used to consult the eleven decision trees. The decision trees being consulted are then confined to 
those - each predicts the presence of the corresponding action. If these predictions lead to the same 
digit, the system adopts the digit as the final prediction. Otherwise, the system makes no prediction 
about the student’s answer. 
 
Figure 2 shows a sample theory inferred by C4.5-IOAM. Decision trees with only one leaf labelled 
F predict the student will not exhibit the corresponding actions. Tree_M predicts that if the 
subtrahend digit is zero, the student will assign the minuend as the answer. 
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Figure 1: Formation of a column’s training examples for decision trees 
 

 
 
Figure 2: A theory inferred by C4.5-IOAM 

3 Techniques for resolving conflicting predictions 
The current version of C4.5-IOAM makes no prediction whenever different decision trees make 
conflicting predictions. The following conflict-resolving techniques are proposed to improve the 
prediction rate of the current system. 

3.1 Using quality measure of a decision tree 
The prediction rate of the system can be improved by adopting the predictions from the more 
reliable decision trees. A conflict resolution technique like voting is not suitable because the 
decision trees predict different aspects of a student’s actions. We assume decision trees making 
conflicting predictions have different characteristics in terms of measurable quality such as 
prediction accuracy and prediction error rate. 



Chiu, B.C., Webb, G.I. and Zheng, Z “Using Decision Trees for Agent Modelling: A Study on Resolving 
Confliction Predictions” 
  Page 4 of 9 

We employed stratified ten-fold cross-validation (Kohavi, 1995) for estimating the error rate of 
each decision tree. For each action feature, the training examples are randomly divided into ten 
equal-sized partitions. Each partition, which preserves the original class distribution, is used in turn 
as test data for the decision tree trained on the remaining nine partitions. The total numbers of 
correct and incorrect predictions of these tests are then used to estimate the error rate of the 
decision tree trained on the whole training set. A C4.5-IOAM system can improve its prediction 
rate by associating decision trees with estimated error rates, and consulting the trees in a ranked 
order. With this consulting order, the first tree that gives a positive prediction is used to make the 
system’s prediction. This method contrasts to the current system, which consults the trees in 
parallel. 

3.2 Using a leaf quality measure  
The error rate of a tree reflects the overall quality of the tree. We know that different leaves have 
different predictive power because the evidence on which they make predictions are different. A 
leaf with less support on a high quality tree may make a poorer prediction than a leaf with more 
support on a tree with a relatively lower quality. A closer look at how C4.5 builds a decision tree 
may help to explain this. C4 .5 builds decision trees by using a divide and conquer strategy. It 
recursively selects the best attribute, which will generate less complex subtrees, to form branching 
nodes. Examples of the training set are partitioned based on the selected attribute. This process 
continues until the training set at a node cannot be further divided, for example, because no 
significant split exists. In the case that a terminal node (leaf) contains examples of different classes, 
it takes the majority class as the leaf label. When the tree is used to predict the class of an unseen 
(test) example, it traverses the unseen example through a decision path and suggests the leaf label 
of the path as the prediction. The reliability of this prediction can be estimated by examining the 
distribution of the classes of training examples at the leaf node. We are only concerned with the 
leaf labelled with T for predicting that a student will exhibit a particular action. Let t denote the 
total number of examples, and e denote the number of examples labelled with F, at the leaf node 
with label T, a value based on the Laplace formula, (e + 1)/(t + 2), can be used as the estimated 
error rate of a leaf.. A C4.5-IOAM system can therefore adopt the prediction of a decision tree of 
which the leaf node of the decision path is associated with a lower error measure. 

3.3 Using a single tree instead of multiple trees 
The tree and leaf quality approaches attempt to resolve multiple predictions. Another approach is to 
circumvent the problem by producing only one prediction. We can achieve this by developing a 
single tree that predicts the most useful action feature for predicting an agent’s actions in a given 
context. Such a tree requires a training set labelled with the most useful action feature for each 
example. We propose a two- phase identification algorithm (see Figure 3) which can be employed 
at the training stage. For each training example which is accompanied with more than one action 
feature, each action feature is validated by a lazy Bayesian tree1 (Zheng and Webb, 1997) trained 
from all other training examples. The lazy Bayesian tree is used for the sake of computational 
efficiency. This filtering process reduces the number of examples with multiple action features. At 
the second stage, those training examples with multiple action features form a temporary test set. A 
temporary decision tree, trained on examples that each has a unique action feature, predicts the 
most useful action feature for each example in the test set. The ultimate training set, in which each 
example is labelled a most useful action feature, or as unknown if a most useful action feature 
cannot be identified, infers a single tree for the system. 

                                                 
1 For each test example, the Lazy Bayesian Tree learning algorithm generates one relevant decision path. The leaf of the 
path uses a local naive-Bayesian classifier, instead of a majority class, to classify the test example. 
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Given: raw training set M with N examples, from a single student, in the form of 

(Att, undetermined_action) where Att is a set of problem context features; 
11 training sets, iA , each has N examples in the form of (Att, ia ), ia ∈{F,T} where 

F/T stands for the status, absence/presence, of a corresponding action feature. 
Output a training set of examples in the form of (Att, Action), Action ∈ {M-S, M-S-1,…,correct, unknown}. 
 
FOR n: =1 to N DO 

obtain a status list ( 1a ,…, ia ,…, 11a  ) from the n-th examples from training sets 1A …. iA ,… 11A  

generate an index list L, of competing actions, where L = (.,i,..) for any ia  = T 

IF L has more then one element THEN L = Reduce_competing_actions (L, n) 
IF L has one element i THEN undetermined_action: = Action i  

ELSE IF L is empty THEN undetermined_action: = unknown 
ELSE 

append example n  to undetermined example list U; and 

append L to a list of competing action lists LL 
 

FOR each undetermined example, exampleu , in U DO 

retrieve the corresponding L from LL 

undetermined_action = Classify_within_competing_actions(exampleu , L) 

 
Process name: Reduce_competing_actions.    /*Phase 1: Internal identification */ 
Given: L, an index list of competing actions; n, an index of the current example. 
Output L, a revised index list of competing actions. 
 

FOR each index i in L DO 

  build a lazy Bayesian tree LBT i  based on A i  excluding the example n  

   IF the predicted class of the test item, example n , is F 

    THEN remove i from L 
RETURN L 
 

Process name: Classify_within_competing_actions.   /*Phase 2: Global identification*/ 
Given: example u , a test example ; L, a list of index of competing actions. 

Output:  an action, or unknown. 
 

prepare a temporary training set by copying all examples, for which class labels match the actions 
described by the index in L, from the raw training set 
IF the temporary training set is not empty 
THEN 
  build a decision tree D to test exampleu  and RETURN the action predicted by D 

ELSE 
  RETURN unknown 

 
Figure 3. Two-phase identification process. 
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4 Experiments 
The same data set, which has been used to evaluate C4.5-IOAM and other IOAM based subtraction 
modellers (Webb et al., 1997; Chiu et al., 1997), was used to evaluate experimentally the 
techniques discussed in Section 3. The data came from 73 primary school students who were 
administered with five rounds of subtraction-problem tests. For each student, a modelling system 
used all data from prior rounds to build a student model and used the current round data to test the 
student model. The data set allows a system to conduct 264 training-testing processes. 
The performance of the current version of C4.5-IOAM was used as a baseline. There were a total 
of 30,474 student answers, of which 3,630 were incorrect answers. The C4.5-IOAM system made 
28,700 predictions, of which 26,507 (92%) were correct. Of the system’s 1,999 predictions that a 
subject would provide an incorrect digit for a column, 1,347 (67%) were accurate, predicting the 
exact digit provided. We used the symbols +Tree_QTY, +Leaf_QTY and Single -tree to represent 
new versions that were implemented by introducing quality measures on trees and leafs, and 
merging multiple trees to a single tree respectively. The performance of these new versions was 
compared with C4.5-IOAM. Table 1 summarises these results. 
We used a two-tailed pair-wise t-test to evaluate the statistical significance of the observed 
differences. The performance differences of the 264 model tests are summarised in Table 2, where 
the number at the intersection of row A > B and column C represents the number of cases in which 
system A outperformed system B for the performance category C. 
All new versions achieved significant improvement in prediction rate while their overall prediction 
accuracy dropped slightly. However, their numbers of correct predictions were still higher than that 
of C4.5-IOAM. The introduction of quality measures for decision trees and leaf nodes increased 
the number of error predication with an expanse of error prediction accuracy. Again, their numbers 
of correct predictions were still higher than that of C4.5-IOAM. In this aspect, the difference 
between the Single-tree version and C4.5-IOAM was not significant. 
Regarding the inferred theories generated by these systems, only the Single -tree version generated 
a single tree for describing a student’s problem solving competency. Figure 4 and Figure 5 show 
the outputs of the single-tree and of the multi-tree versions when a student’s first round 
performance was captured. Both models exhibited identical performance in predicting the student’s 
next round answers. The multi-tree representation tells the absence and presence of each action in 
detail. For the Single-tree version, a leaf labelled as correct covers those actions leading to correct 
answers, while a leaf with other label tells how an erroneous action is predicted. This single model 
is likely to be easier for teachers and students to understand. 

 

 C4.5-IOAM +Leaf_QTY +Tree_QTY Single-tree 

Number of predictions made 28.700 30.093 29.783 30,130 

Prediction rate 94.2% 98.7% 97.7% 98.9% 

Number of predictions that were correct 26,507 27,543 27,308 27,495 

Prediction accuracy 92.4% 91.5% 91.7% 91.3% 

Number of error predictions made 1,999 2,173 2,346 2,095 

Prediction rate 55.1% 59.9% 64.6% 57.7% 

Number of error predictions that were correct 1.347 1,426 1,485 1,373 

Prediction accuracy 67.4% 65.6% 63.3% 65.5% 

 

Table 1: Performance of new versions created by three kinds of treatment 
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More 

predictions 

Made 

Higher 

accuracy 

More error 

predictions 

Made 

Higher 

accuracy 

(for  errors) 

+Leaf_QTY> C4.5-IOAM 197 73 40 7 

C4.5-IOAM >+Leaf_QTY  0 105 0 24 

 (p<0.0001) (p=0.0001) (p<0.0001) (p=0.0081) 

+Tree_QTY> C4.5-IOAM 186 80 79 11 

C4.5-IOAM >+Tree_QTY 16 103 1 35 

 (p<0.0001) (p=0.0001) (p<0.0001) (p=0.0029) 

Single-tree> C4.5-IOAM 195 83 48 17 

C4.5-IOAM >Single-tree 14 114 33 39 

 (p<0.0001) (p<0.0001) (p=0.2045) (p=0.1460) 

Table 2: Observed differences in performance between new versions and C4.5-IOAM 
 
 
Tree_actions 

 
 
Figure 4: Knowledge representation inferred by a single -tree modeller 
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Figure 5: Knowledge representation inferred by a multi-tree modeller 

5 Conclusions 
The main tasks of modelling systems mentioned in this paper are learning to predict correct and 
erroneous actions, and generating theories describing agents’ behaviours in subtraction problem 
solving. The main problem discussed in the paper is how to resolve conflicting predic tions about 
an agent’s action. We have described and evaluated three techniques for this objective. 
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Techniques of employing quality measures on decision trees and leaf nodes in resolving conflicting 
predictions at testing stage have been shown to be effective for this purpose. These two methods 
cover two aspects of resolving conflicts: adopting a decision from a point of view at global level; 
and considering the judgement based on local experience. It is quite similar to consulting human 
experts. While an engineer might have good abstract knowledge but lack sufficient experience for a 
particular case, an ordinary person could have encountered numerous similar examples and could 
be an expert for that case. The employment of merging multiple trees into a single tree shifts the 
conflict resolution to the training stage. The results are also promising. The Single -tree version 
achieved significant improvement in prediction rate with a slight drop in overall prediction 
accuracy. However, the number of correct predications was still higher than that of the original 
system. There was no significant performance difference in predicting incorrect answers, when it 
was compared with the baseline. 
The use of multiple decision trees to represent different aspects of a student’s action allows an ITS 
administrator to diagnose each action in detail. Yet, if a human tutor wants to get the whole picture 
of a class, thirty students, for example, a picture represented by thirty single trees should be 
preferable when compared with that involving hundreds of trees. 
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