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A modeling system may be required to predict amtgduture actions even when confronted by
inadequate or contradictory relevant evidence fatrservations of past actions. This can result
in low prediction accuracy, or otherwise, low petitin rates, leaving a set of cases for which no
predictions are made. This raises two issues.st,Fivhen maximizing prediction rate is
preferable, what mechanisms can be employed swthatlsystem can make more predictions
without severely degrading prediction accuracy?co8d, for contexts in which accuracy is of
primary importance, how can we further improve fo#on accuracy? A recently proposed
Dual-model approach, which takes models’ tempolealracteristics into account, suggests a
solution to the first problem, but leaves room fiaither improvement. This paper presents two
classes of Dual-model variant. Each aims to aehiewe of the above objectives. With the
performance of the original system as a baselilg;wdoes not utilize the temporal information,
empirical evaluations in the domain of elementauptisaction show that one class of variant
outperforms the baseline in prediction rate while éther does so in prediction accuracy, without
significantly affecting other overall measuresiué priginal performance.
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1 Introduction

A major difficulty confronts any student modeling system opegatm an educational
environment. While the system seeks to form a model of a subject’'s competasadon

observations of applications of those competencies, by the time ttdilacted sufficient

observations to form a model, the competencies that generated thleoingervations are
likely to have changed. When a student model is formed based on histbseavations

of the student’s behavior, older evidence is likely to be lessnpattiihan more recent
evidence for accurately predicting the student’s future actions. A leaystgm that treats
all historical data with equal weight may produce inaccutaigest models, reducing their
practical utility and degrading their prediction performance. Hewat is rarely possible
to accurately determine which observations pertain to the studemtent competencies.
Consequently, to discard older observations is to risk discarding valpetileent data.

When a modeling system is required to predict a student’s futti@nait may face a

dilemma: to make an unreliable prediction or to make no predictiah. afhis can result

in low prediction accuracy, or otherwise, low prediction ratesjingaa set of cases for
which no predictions are made. This raises two issues. Firgh, mvagimizing prediction

rate is preferable, what mechanisms can increase predid@owithout severely degrading
prediction accuracy? Second, for contexts in which accuracy isimanyr importance,

how can we further improve prediction accuracy without degrading prediction rate?

Previous attempts at tackling the first issue by using vadon8ict resolution methods
have reported trade-offs between prediction rate and predictioraagcwhere prediction
rate improved at the expense of reducing prediction accuracy [ZCl6l and Webb [1]
propose a Dual-model approach (using two temporally divided modelaleviate this
problem. These two models, namely treshandextendednodels, once inferred, can not
only better predict students’ future actions, but also enrich theripiéen of a student’s
mastery of a domain. Initial evaluation of Dual-model in the cargéxnodeling 3-digit



subtraction skills has demonstrated that the augmented systeprosdaie significantly
more predictions without significantly affecting the levels prédiction accuracy [1].
However, only one of a number of possible strategies to this enéxpésred. Further,
this ‘fresh-first’ strategy was based on the assumption thadrduictions of a model based
on recent evidence would be more accurate than an ‘extended’ model drasst
observations of the student. Subsequent testing of this hypothesis sdghestit was
incorrect, however [X — need to fix up reference numbering]. In adcdithis method was
evaluated with a data set for which varying methods were usedllext data from a
moderate size of population (73 students from three schools). In ordenfton that the
original Dual-model can yield better performance, a re-etialuaf this method with new
data is desirable.

Moreover, previous studies have not dealt with the second main isgabniques for
improving prediction accuracy while maintaining prediction ra¢@sain an important goal.
This research investigates a new class of techniques kintathis problem. Considering
the simplicity of the Dual-model approach, which imposes only a a@deiticrease on the
original computational cost, we explored new alternatives to thitadeand developed
three new variants of the Dual-model method, aimed at improvingramc without
adversely affecting prediction rate. This paper presents dnagoa of these alternatives
derived from the Dual-model approach in a domain of modeling students’ subtractien skill

2 Theuseof temporal information in student modeling systems

A student’s knowledge and beliefs may alter over time. Consequenttatic student
model may not truly reflect the student’s current knowledge. Waidengrandi and Tasso
[4] propose a temporal management mechanism, such that contradygtotgdses about a
student can co-exist within a model, Webb and Kuzmycz [9] embeddedaaadizy
mechanism in the FBM (Feature Based Modeling) system [8]h Bbthese approaches
share a belief that historical data, which is based on direct obieas/as a valuable source
of information for student models, and should not be overlooked.

To utilize temporal information in historical data, Giangrandi aasisd introduce a time
variable to be used in a truth maintenance system, which aims to genedsais to explain
students’ explicit and implicit beliefs. In contrast, aimindpailding shallow but accurate
models, FBM’s data aging mechanism does not require an exphietvariable, utilizing
instead only the temporal order of the observations. This is usesictudt old data by a
set factor. Unfortunately, however, empirical evaluation of daiagageveals poor
performance in practice [9]. Chiu and Webb [1] propose an alternsitiyele method,
called Dual-model, to cater for the temporal factor. Thishotwtreates a temporal model,
namelyfreshmodel(built using data from the most recent observations), in additidmeto t
conventional model, which is referred to aseatendedmodel(inferred from data of all
historical observations). When a Dual-model system predictaderdts future actions,
both models will be consulted.

The advantages of the Dual-model method include: (1) it is simphegiement; and (2)
it can be applied to other modeling systems for which trainiagneles can be grouped by
temporal characteristics. With respect to model interpretati@nfresh model provides
additional information that the users may compare with the extemdel@| to interpret
which aspects of a student’s behavior have changed. Cook and Kayw¢3htgaed that
students will benefit from viewing their own models. To this endities that simplify
models’ knowledge representation can be employed in Dual-modebvimgrreadability
and hence ensuring that those novice users may receive greater educational benef



The previous study of the Dual-model approach explored various seqegensaltation
strategies over the underlying models and favordesh-first strategy where the fresh
model was consulted first. Under a sequential strategy, thelsnaieconsulted in turn
until one makes a prediction, or all are exhausted. As alreathdsthis strategy was
motivated by the assumption that the fresh model would be more a&ccalaeit with
lower prediction rate) than the extended model, an assumption thadjseiiseesearch has
drawn into question [X]. However, Dual-models could also operate undeousari
combinations of parallel consultation, and this paper seeks to evdieatgility of these
alternative Dual-model variants. For ease of exposiDoal-mode] hereafter, will refer to
the generic method without specifying which consultation strategysesl, andDual-
modellwill refer to the Dual-model method using the original frassi-fstrategy, in the
remaining sections of this paper.

3 New variants of Dual-mode€

Dual-model was originally designed to improve the predictionobhfBM-C4.5, a variant
of FBM. The FBM systems build a black-box model of an agent Ipyudag the
relationships between the inputs and outputs of the agent’s cognisiteensy The context
in which an action is performed is characterized by a sattobute values called context
features. An agent’s action is characterized by a settalbuae values called action
features. For each attribute with action features as valussh-anodel is inferred that
predicts a specific action feature for any given combination ofegbrieatures. These
disparate sub-models can be considered in isolation, to examine rdiffe@ects of the
agent being modeled. Alternatively, the predictions of each sub-maddiec aggregated
to make detailed predictions about specific behavior. FBM-C4.5 ispleinentation that
adopts the FBM approach, using C4.5 [7] as an induction engine to ieeision tree for
each sub-model. Placing accuracy as the first prioritythallFBM systems make no
prediction, by default, when there exists ambiguity among theifgpgredictions of
individual sub-models (a sub-model’'s prediction predicts whether aandetature will be
present, while its specific prediction predicts the outcome ofattain feature). For FBM-
C4.5, this is implemented by employing a consensus resolver tomdetea final
prediction.

Given a domain, for which predictions are required, Figure 1(a) ahestrthe cover of
predictions made by a hypothetical system (for example, FENMH)Cwhere a symbolx®
stands for a case for which no prediction is made. Figure 1gmtsl@ possible cover by
Dual-model. The predictions of a new base model (fresh) are sygmesed on those of the
original extended model. Note that the cover by the extended miodel ia the default
setting of the original system. The predictions made by the fredelrovertake part of the
extended model’s cover. Informed by recent findings that both fresexdended models
appear to have comparable general accuracy, , an alternasiteggtis suggested, which
refrains from making predictions whenever the two models makKerealit predictions.
This strategy leads to a Dual-model variant, DualConsensus, whbigults fresh and
extended models in parallel and uses a consensus resolver to handtérgppiiedictions
from the two models. It aims to improve the prediction rate aiglesmodel system while
taking greater precautions against making incorrect predictiéingure 1(c) illustrates a
possible cover by DualConsensus, where a symbblstands for a case for which no
prediction is made due to conflicting predictions from the two models.
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(a) Single-model (b) Dual-modell  (c) DualConsensus Di@lConsensus-strict

These llustrations plot hypothetical models onwa tdimensional space. Each dimension
represents a hypothetical context feature (indegeindariable). Points would normally be

labeled by predicted values, but are here useep@tthe combinations of context feature values
for which a system makes a prediction (coveredHgy shaded area), or makes no prediction
(represented by a symbot™or “007).

Figure 1. Predictions covered by a single-model systemvamnidints of Dual-model.

Alternatively, the system can output a prediction only when both madelse
predictions and suggest the same specific prediction. Othentvgputs no prediction.
The use of thisConsensus-strictresolution mechanism, leading to a variant called
DualConsensus-strict, should provide high prediction accuracy becausesdnetions are
supported by both models. However, the system’s prediction ratdaeviery likely to
drop, as illustrated in Figure 1(d), where the cover area malieally reduced. To solve
this potential problem, a novel method is to use base models augmgngeddiction
promoters to form the Dual-model system. Chiu and Webb [1] have sthdesdconflict
resolvers, namely Voting, Tree-quality, and Leaf-quality, respalgtifor FBM-C4.5. All
of these resolution methods exhibited an improvement in prediction Hagg, & a small
cost in reduced accuracy. These resolution methods can be considetaddmate
prediction promoter techniques to be used within fresh and extended mddeBual-
model trades-off increased accuracy for decreased predictiort veds, anticipated that the
use of these internal resolution techniques within Dual-model migithent each other,
the negative trade-off in one measure from one technique beiregth@r compensated for
by the positive effect on that measure from the other technique.oférations of these
resolvers are summarized as follows.

* Voting resolver: outputs a prediction with a majority of votes from coimgespecific
predictions. If two or more specific predictions tie for the first place, no outputds.ma

« Tree-quality resolver: sequentially consults the trees, which veareed by quality
measures using a ten-fold cross-validation [5] technique. When gitoeales a
positive prediction, its specific prediction is adopted. If all4reee exhausted, the
resolver outputs no prediction.

» Leaf-quality resolver: receives data pairs, <Tree’s predictieaf's quality>, from the
trees, where Leaf is the decision node of a tree for a tesiningnd its quality is
estimated based on the homogeneity of training examples reaching thelfnoolee of
the trees provides a positive prediction, the resolver makes no pmedi@therwise,
among the data pairs for which the first element is positiveretb@ver adopts a tree
associated with the Leaf with the highest quality value, and outputsettis specific
prediction.

Figure 2 summarizes all the new strategies applied to Dadelnmentioned above. A
test problem, which is described by a set of context featurebl@n context), from a
domain, requires the system to predict a student’'s answer. Tieatcsetting illustrates
that DualConsensus-strict is in operation, where a Voting resaveaelected as the
prediction promotor within individual models.
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Figure 2. A prediction made by a variant of Dual-model.

4 Evaluation

4.1 Experiments

224 nine-to-ten year old students from eight primary schools parédipatfive rounds of
tests, where Tests 1 and 2 were conducted with a one day interwedek 1 and the
remaining successive tests were administered at weeklyaige For each test, each
student was administered a test sheet consisting of forty t3sligiraction problems.
Twenty randomly pre-generated repeated problems were intetrmiitle a further twenty
problems generated randomly and uniquely for each sheet. These repeated praflEms
covered a general spectrum of problem context, were included to allaation of
students’ consistency in problem solution, the discussion of which fafigleuhe scope of
this paper. For all random problems, the minuend was greater thaguat to the
subtrahend, ensuring that the correct solutions were not negativeadfotest sheet, all of
the 40 problems were randomly ordered. This might have reduced the exteussdafbn
individual students by other students, for example, through discussion gqfrabem
solving methods after a test, which might affect their performance in fuestsr

The answered test sheets from each student were entered artespanding data file.
To minimize typing errors, each data sheet was input twicecarss-validated to resolve
discrepancies. The data files from those students who have lbssmt §om any test and
from those who answered less than 30 problems on any test sheetxaladed from the
final data set. The resulting data set consists of 172 studesit fBased on the pre-
generated repeated problems, a validation program was usedédaoatry typing errors on
those repeated problems. Seven 3-digit items, out of the 34400 dada itén(files)x 5

(tests) x 20 (repeated problemsy 2 (minuend and subtrahend), were discovered as

mistyped and amended. We obtained a data-entry error rate of 0.0002niAg that the



rate of errors detected in these values was similar toithttie remaining values, we
estimate that the probability of any single randomly genegaigalem or a student answer
being incorrectly entered is less than 0.0005.

The FBM-C4.5 subtraction modeller (henceforth FBM-C4.5) predicth eagit of a
solution independently. In consequence, the following discussion uses then aofitan
subtraction problem as the unit of measure. Four metrics are usefalvaluating a
modeling system:

* Prediction rate the percentage of columns for which a prediction was made;
* Prediction error the percentage of predictions that were incorrect;

» Error prediction proportion the proportion of predictions that predicted an erroneous
answer; and

- Error prediction error. the percentage of error predictions that were incorrect.

For evaluation, a Dual-model system predicted a student's anfwersTests 3 to 5
based on the models inferred from the prior round data.M(&t ..., i) be a model built
from observations from Tesistoi. Each of the following experiments was conducted by
forming two modelsextende(l, ..., n — 1) andfreshn — 1), from a sequence of tests,

..., n =1, which were used to predict a student’s precise answers (on ancbjugolumn

basis) for the 20 non-repeated randomly generated 3-digit questiong im TElse reason
for using those 20 questions in a test instead of all 40 questiohsitithe excluded
guestions are repeated questions, which have been seen in priomtbstsec to infer the
fresh and extended models. The randomly generated questions servedide pnseen
cases to test the systems studied.

Starting fromn = 3, from where the fresh and extended models first differ, the above
process was repeated upte 5. For each student, the total numbers of answers and errors
collected, and the total numbers of predictions and correct predictihes Iny a system in
these tests, were determined. The relevant grand totals fahtile data set were used to
compute overall performance.

The first experiment evaluated two variants of the Dual-modghaod, namely Dual-
modell and DualConsensus, against the baseline FBM-C4.5. Where Dual-mseela
fresh-first strategy to make a prediction, DualConsensus usemsensus resolver to
determine a final prediction. The second experiment evaluatedniéweegariants of Dual-
model, namely DualVstrict, DualTstrict and DuallLstrict, agaihe baseline FBM-C4.5.
The letters V, T and L in these names represent the use afgVesolvers, Tree-quality
resolvers and Leaf-quality resolvers, respectively, in fresh atehaded models. All of
these new variants employCansensus-striagesolver to determine a final prediction.

4.2 Results

In Tests 3 to 5, the 172 students contributed 30,882 answers (digits), of3s0¢hwere
incorrect answers. FBM-C4.5 made 29,483 predictions (95.5% predicti)n Atehese
predictions, 6.3% (27,639) were accurate. For predicting the studenuts, éhe system
suggested 1,980 digits, of which 1,467 were accurate. These accountad domn@la
prediction proportion and error prediction accuracy of 6.7% and 74.1%, reshectWith
these measures as a baseline, the corresponding performasceesied Dual-modell and
DualConsensus are presented in Table 1. We used two-tailed ptEstsl to evaluate the
statistical significance of these systems’ performancenag#ie baseline. The statistical
outcomesp values and values, are also listed in the corresponding columns. Where a
performance difference is significant (at the 0.05 level), treesponding value is shown



in a different font, bold or underlined, to indicate that its is sigaifily better or worse,
respectively. The degrees of freedom of these t-tests were 171 unlesssatispiedified.

Table 1. Performance of two Dual-model variants againstodeeline (two-tailed t-test).

Baseline Dual-modell DualConsensus

Total predictions made 29,483 30,315 30,091
Prediction rate (%) 95.5 98.1 97.4
p value [ value] < 0.0001 [9.01] <0.0001 [7.33]
Total predictions that were incorrect 1,844 2,084 1,960
Prediction error (%) 6.3 6.9 6.5
p value [ value] 0.0067 [-2.75] 0.1018 [-1.65]
Error predictions made 1,980 2,144 2,031
Error prediction proportion (%) 6.7 7.1 6.7
p value [ value] 0.0358 [2.12] 0.3561 [0.93]
Error predictions that were incorrect 513 616 553
Error prediction error (%) 25.9 28.7 27.2
p value [ value] 0.4636 [-0.74] 0.7886 [0.27]

45 45

degree of freedom*

" OR ERROR PREDICTION ACCURACY. DWLY PAIRS N WHICH ERROR PREDICTIONS HAVE BEEN MADE BY BOTH SYSTEMS CAY BE COMPARED

As can be seen, Dual-modell achieved an overall prediction r@& 186, and an error
prediction proportion of 7.1%, which is significantly higher than thatBi¥1FC4.5 (95.5%
and 6.7% respectively). However, a small but significant inereagrediction error (6.9)
is also observed. For DualConsensus, a significant improvement (byith.8%grediction
rate has been achieved while there is a slight but not signifieerease in prediction error,
in comparison to FBM-C4.5. DualConsensus comes closest to our objecin@eafsing

prediction rate without degrading accuracy.

The performance of the second group of Dual-model variants is surethan Table 2.
DualVstrict exhibits a trade-off effect across the four prediction perfoo@ecategories.
DualLstrict and DualTstrict achieve a significant improvement in overall prediction error
without affecting the overall prediction rate. Note that thestill a trade-off effect on the
performance of error prediction for these two systems. Whdabatantial gain in error
prediction error is observed for each of them (3.9% and 4.5%, DualTstddRualLstrick,
respectively), each trades off a considerable loss in errdicpom proportion (0.7% and

0.8%, respectively).

It appears that the technique of integratingx&rnal Consensus-

strict resolver and internal quality-oriented conflict resolvereffective in reducing the
risk of making incorrect predictions while a high level of ovepadidiction rate can still be
maintained. In the context of overall performance, these variatitdwybrid combination

of conflict resolvers achieve our second objective.

In the conteattrof prediction, the

effectiveness of this class of Dual-model is subject to how these utilitiesad.

Table 2. Performance of three Dual-model variants agahesbiseline (two-tailed t-test).

Baseline DualVstrict DualTstrict DualLstrict
Total predictions made 29,483 29,230 29,582 29,485
Prediction rate (%) 95.5 94.7 95.8 95.5
p value [ value] 0.0377 [-2.09] 0.7673 [0.30] 0.9868 [0.02]
Total predictions that were incorrect 1,844 1,563 1,597 1,576
Prediction error (%) 6.3 5.3 5.4 53
p value [ value] 0.0011 [3.32] 0.0028 [3.04] 0.0008 [3.43]
Error predictions made 1,980 1,731 1,770 1,727
Error prediction proportion (%) 6.7 5.9 6.0 5.9
p value [ value] 0.0001 [-4.02] 0.0006 [-3.50]  <0.0001 [-4.01]
Error predictions that were incorrect 513 378 390 370
Error prediction error (%) 25.9 21.8 220 214
p value [ value] 0.0251 [2.32] 0.0084 [2.77] 0.0489 [2.03]
degree of freedom 43 43 42




5 Conclusions

Two classes of Dual-model variants have been evaluated in this skath attempts to
solve one of the problems stated at the commencing section of ffes. §4) how to
improve prediction rate without degrading prediction accuracy; andhd) to improve
prediction accuracy without affecting prediction rate.

For the first objective, experimental results show that Dual-thoue effective for
improving the prediction rate. However, prediction accuracy ghttji but significantly
affected. DualConsensus achieves a significantly higher pediaate without
significantly degrading the prediction accuracy of the origimagle-model system, in the
domain of studied.

For the first objective, the employment of a Tree- or Leaf-iyuadsolver internally and
a Consensus-strict resolver externally enables a Dual-mosteinsyo achieve significant
improvement in prediction accuracy without significantly affectihg overall prediction
rate. Of these two resultant hybrids, DualLstrict runs maskef than DualTstrict, due to
the fact that a leaf quality estimate can be directly access®deftree while a tree’s quality
is estimated through a computing-intensive process. This observatioessugbat
DualLstrict is to be preferred among variants of this class.

Our experimental results reveal, in situations where a sar@sservations are collected
over an extended period of time, the Dual-model approach, which takper&rfactors
into account, provides two directions for improving overall prediction perfocsa Dual-
consensus improves the overall prediction rate, while DuallLstripraves the overall
prediction accuracy, albeit without improvement in error prediction ptioporof the
original single-model system. While the Dual-model techniquebleas developed and
evaluated in the context of FBM-C4.5, it should be equally applicablenyostudent
modeling system that constructs models from multiple observations over time.

References

[X] Chiu, B. C, “Predictive Modeling of Student Cpetency” PhD thesis, Deakin University, Geelong,
Aust., 1999. (Or other reference if there is one).

[1] Chiu, B. C., and Webb, G. I., "Using decisioreas for agent modeling: Improving prediction
performance"User Modeling and User-Adapted Interactiaol.8, no. 1-2, pp. 131-152 (1998).

[2] Chiu, B. C., Webb, G. I., and Zijian, Z., "Ugirdecision trees for agent modeling: A study orolkésg
conflicting predictions"Proceedings of IDAustralian Joint Conference on Atrtificial Inteligce Al97,
Perth, pp. 349-358 (1997).

[3] Cook, R. and Kay, J., "The justified user model viewable, explained user modeProceedings of
Fourth International Conference on User Modeliktyannis, Mass., pp. 145-150 (1994).

[4] Giangrandi, P., Tasso, C., "Temporal reasonmgtudent modelling"Proceedings of Al-Ed 97 World
Conference on Atrtificial Intelligence in Educati&iobe, Japan. I0S Press, pp. 514-521 (1997).

[5] Kohavi, R., "A study of cross-validation anddtstrap for accuracy estimation and model selettion
Proceedings of the 14th International Joint Confexe on Artificial Intelligence Morgan Kaufmann, pp.
1137-1145 (1995).

[6] Kuzmycz, M., "Resolving conflicting knowledga istudent models'Proceedings of the Eighth World
Conference on Atrtificial Intelligence in EducatioAmsterdam: I0S Press, pp. 522-529 (1997).

[7] Quinlan, J. R.,C4.5: Programs for Machine LearnihgViorgan Kaufmann (1993).

[8] Webb, G. I., and Kuzmycz, M., "Feature Basedddling: A methodology for producing coherent,
dynamically changing models of agent’'s competeficigdser Modeling and User-Adapted Interaction
vol. 5, no. 2, pp. 117-150 (1996).



[9] Webb, G. I., and Kuzmycz, M., "Evaluation oftdaaging: A technique for discounting old data dgri
student modeling"Proceedings of the Fourth International Conferemge Intelligent Tutoring System
(1998).



