
1

Using C4.5 as an Induction Engine for Agent Modelli ng:
An Experiment of Optimisation

Patrick Chiu

chiu@deakin.edu.au
School of Computing and Mathematics, Deakin University, Australia

Fax: +61 3 52272028

Abstract: Input-Output Agent Modell ing (IOAM) is an approach to modelli ng an agent in terms of
relationships between the inputs and outputs of the cognitive system. This approach, together with one
of the leading inductive learning algorithm, C4.5, has been adopted to build a C4.5-IOAM subtraction
modeller, which aims to model students’ competencies on elementary subtraction skil ls. Results
showed that C4.5-IOAM could achieved reasonably high predictive power for this purpose. Very little
attempt has been made for optimising the current system that improvement of its performance could be
achieved by employing strategies and techniques for this purpose. This paper reports an experiment
that studied how the system’s performance could be improved with techniques of confining training
examples and resolving conflicting predictions. Results show that these strategies improve the
system’s performance in the aspects of capturing more student errors and achieving higher prediction
rate.

1 Introduction

The use of inductive learning for student modelli ng has been studied previously (for example,
Desmoulins and Van Labeke, 1996; Gilmore and Self, 1988). Yet, it is still underrepresented.
One of the reasons may be that a modelli ng system requires extra efforts for implementation if its
inductive engine is tightly linked to the cognitive aspects of an agent. Input-Output Agent
Modelli ng (IOAM) provides an approach that it allows a system treats the operation of the
cognitive system as a black box and models an agent in terms of the relationships between the
inputs and outputs of the system. By describing the capabiliti es rather than capturing internal
mechanisms of the cognitive system, this approach reduces the system’s inter-modular
complexity and allows different inductive engines to plug-in for generating different languages to
describe an agent. Previous IOAM approaches include Feature Based Modelli ng (FBM) (Webb
and Kuzmycz, 1996), Relational Based Modelli ng (Kuzmycz, 1995), FFOIL-IOAM and C4.5-
IOAM (Chiu et al., 1997). Among them, C4.5-IOAM uses C4.5 (Quinlan, 1993), a well -known
and general-purpose learning algorithm, as its induction engine to model a student’s competency
of subtraction skill s. Comparative evaluations of C4.5-IOAM against FBM (Geoff et al., 1997)
and FFOIL-IOAM (Chiu et al., 1997) have shown that the use of C4.5 increased the number of
predictions made without significantly altering the accuracy of those predictions. There was very
littl e attempt has been made for optimising C4.5-IOAM that its prediction performance could be
improved in the aspects of student error prediction and the overall prediction rate. This paper
reports an experiment that studied how this objective could be achieved with the techniques of
confining training examples and resolving conflicting predictions.

michelle
Pre-publication draft of paper which appeared in the Proceedings of the First Machine Learning for User Modeling Workshop UM'97
Authors: B.C. Chiu and G.I. Webb

2

2 An overview of C4.5-IOAM

In the C4.5-IOAM subtraction modeller, the ways of manipulating context and action features of
the problem domain were adopted from by FBM (Webb & Kuzmycz 1996). Context features
describe the problems with which a student is faced while action features describe aspects of a
student’s actions for a particular problem. C4.5-IOAM manipulates a n-digit subtraction problem
by treating it as n separate column problems. It uses eleven decision trees to build a student
model. They correspond to the action features Result=M-S, Result=M-S-1, Result=10+M-S,
Result=10+M-S-1, Result=M, Result=S, Result=zero, Result=M-S-2, Result=10+M-S-2,
Result=S-M and Result=correct, where M and S stand for Minuend and Subtrahend respectively.
Each decision tree can be regarded as a model of a student’s action (behavior). The context
features of a unit problem are described by 12 attributes. The first four attributes, M_is_0,
S_is_0, S_is_9 and S_is_BK (BK stands for blank), are self-explained, while the rest of them are
listed below with their meanings where N stands for Not Available.

• M_vs_S : { G,L,E}, the Minuend is greater or less than, or equal to the Subtrahend.
• M_L_is_0 : { T,F,N}, the Minuend digit in the column to the left is zero.
• M_L_is_1 : { T,F,N}, the Minuend digit in the column to the left is one.
• M_R_is_0 : { T,F,N}, the Minuend digit in the column to the right is zero.
• S_R_is_9 : { T,F,N}, the Subtrahend digit in the column to the right is nine.
• M_S_R : { G,L,E,N}, similar to M_vs_S, but it describes the column to the right.
• M_S_2R : { G,L,E,N}, similar to M_vs_S, but it describes two columns to the right.
• Column : { L,I,R}, the current column is left-most, inner or right-most.

Figure 1 ill ustrates how training examples are formed for a data file which is used to build a
corresponding decision tree.

Figure 1. Formation of a column’s training examples for decision trees.

…………
F,T,F,F,GT,F,F,F,T,LT,N,I,F.
…………..

…………
F,T,F,F,GT,F,F,F,T,LT,N,I,F.
…………..

…………
F,T,F,F,GT,F,F,F,T,LT,N,I,F.
…………..

 5 9 2
 − 2 0 9

 3 9 3

…………
F,T,F,F,GT,F,F,F,T,LT,N,I,F.
…………..

…………
F,T,F,F,GT,F,F,F,T,LT,N,I,F.
…………..

…………
F,T,F,F,GT,F,F,F,T,L N,I,F.
…………..

Result=M-S T

Result=10+M-S F
Result=M-S-1 F

Result=10+M-S-1 F
Result=M T
Result=S F
Result=zero F
Result=M-S-2 F
Result=10+M-S-2 F
Result=S-M F
Result=correct F

 FILE: Tree_M-S.data
 F,T,F,F,G,F,F,F,T,L,N,I,T.

 …………..

M_is_0 F
S_is_0 T
S_is_9 F
S_is_BK F
M_vs_S G

M_L_is_0 F
M_L_is_1 F
M_R_is_0 F
S_R_is_9 T
M_S_R L

M_S_2R N

Column I

Context features Action features

3

Figure 2 shows a sample theory inferred by C4.5-IOAM. Decision trees with only one leaf
labelled F predict the student will not exhibit the corresponding actions. Tree_M predicts that if
the subtrahend is zero, the student will assign the minuend as the answer.

Figure 2. A theory inferred by C4.5-IOAM.

3 Techniques for improving prediction performance

The current version of C4.5-IOAM makes no prediction whenever there exist conflicting
predictions made by decision trees. This reflects that there is still scope for the current system to
be improved. This section will explore methods that aim to improve the prediction rate or
prediction accuracy of the current system.

3.1 Confining training examples to erroneous answers
A decision tree which serves to predict a student’s erroneous action should be trained by
suff icient evidences of related examples. If the set of relevant examples is incomplete or
erroneous cases share a very small proportion, a decision tree might predict no erroneous action.
However, improvement in predicting students’ errors could still be possible if some of the
decision trees are specially trained for this purpose. Consider a unit problem m − 0 that a student
gave a correct answer of m. This might not be a case to support that the student set the digit m as
the answer; it was more likely to support that the student had exhibited an action: Result=M-S.
On the other hand, if m was an incorrect answer, this case would be an evidence to support an
erroneous action: Result=M. By confining training examples to erroneous answers only, the
decision tree Tree_M would be more effective to capture a student’s erroneous action. This
treatment can be applied to decision trees Tree_S, Tree_S-M and Tree_zero for improving the
system’s performance in error predictions. However, it may cause some decision trees to be over
reactive. They would tend to incorrectly predict that a student will exhibit erroneous actions.
The risk of this prediction error could be reduced by introducing reliabili ty measures for a
prediction that will be discussed in the next two subsections.

 Tree_M-S-1 Tree_M-S-2 Tree_10+M-S-1 Tree_10+M-S-2

 F F F F

 Tree_M Tree_M-S Tree_10+M-S Tree_zero

S_is_0 = F:F M_vs_S = G:T M_vs_S = G:F M_vs_S = G:F
S_is_0 = T:T M_vs_S = L:F M_vs_S = L:T M_vs_S = L:F
 M_vs_S = E:T M_vs_S = E:F M_vs_S = E:T

 Tree_correct Tree_S Tree_S-M

M_S_R = G:T M_is_0 = T:F M_vs_S = G:F
M_S_R = L:F M_is_0 = F: M_vs_S = E:T
M_S_R = N:T |---M_L_is_1 = F:F M_vs_S = L:
M_S_R = E:F |---M_L_is_1 = N:F |---M_L_is_1 = T:F
 |---M_L_is_1 = T:T |---M_L_is_1 = N:F
 |---M_L_is_1 = F:T

4

3.2 Associating an estimated error rate to a decision tree
The prediction rate of the system can be improved by resolving conflicting predictions.
Technique like voting is not suitable to the system because the decision trees predict different
aspects of a student’s actions. By associating decision trees with estimated error rates, and
consulting them in a ranked order, the system could make more predictions without dropping the
prediction accuracy significantly. We have considered employing stratified ten-fold cross-
validation (Kohavi, 1995) for estimating the error rate of each decision tree. For each action
feature, the training examples are equally divided into ten partitions. Each partition, which
preserves the original class distribution, is used in turn as test data for the decision trees trained
by the remaining nine partitions. The total numbers of correct and incorrect predictions of these
tests are then used to estimate the error rate of the decision tree trained by the whole training set.
The system’s prediction is based on an action (a prediction T from a decision tree) which links to
a digit. If a decision tree predicts no action, the system will consult the others in a preference
order until a positive response is obtained or the error rate of the current decision tree exceeds a
threshold limit .

3.3 Retrieving an error measure at a leaf node
The method of estimating error rate for each decision tree mentioned above provides an overall
measure of prediction quali ty of a decision tree. The leaf node of a path of a decision tree may
also provide an estimated error measure of a prediction. C4.5 takes the class of the majority at a
leaf node as the leaf label and gives that label as prediction when a test example matches the
decision path. The reliabili ty of this prediction can be estimated by examining the distribution of
the classes at the leaf node. Since we are only concerned with the leaf labeled as T for predicting
that a student will exhibit a particular action, the proportion of examples with class label F at that
leaf node could be used as the estimated error rate of a prediction. Whenever there exist
conflicting predictions, the system might adopts the prediction of a decision tree which leaf node
is associated with a lower estimated error rate.

4 Experiment

The same data set, which has been used to evaluate C4.5-IOAM and other IOAM based
subtraction modellers (Geoff et al., 1997; Chiu et at., 1997), was used to evaluate the techniques
mentioned in Section 3. The data came from 73 primary school students who were administered
with five rounds of subtraction-problem tests. For each student, a modelli ng system used all data
from prior rounds to build a student model and used the current round data to test the student
model. The performance of the current version of C4.5-IOAM was used as a base line. The
symbol +X was used to denote a version that was implemented by introducing a technique X to
the current system. We used the keys LIMIT, TQTY and LQTY to represent limiti ng training
examples to erroneous answers, associating estimated error rates to decision trees, and retrieving
an error measure at a leaf node respectively. New versions that were created by implementing
more than one technique were also evaluated. For example, the version +TQTY+LQTY makes
predictions based on the information of the prediction qualiti es of the decision tree and the leaf
node of a decision path. The system would adopt a prediction of a decision tree in which the leaf
node bears lower error rate despite the decision tree is not the most preferable one.

5

4.1 Experimental results
Table 1 summarizes the prediction performance of four decision trees built with default (Full)
training set with that trained by confining training examples to erroneous answers (Limit). As
expected, these decision trees improved their performance (indicated in bold fonts) in error
prediction, with the expense of poorly predicting students’ correct actions.

Table 1. The performance of decision trees fed by full and bias training set.

Tree_M Tree_S-M Tree_S Tree_zero

Full Limit Full Limit Full Limit Full Limit

Number of predictions of action
that led to correct answer

Number of predictions that were
correct

Accuracy

3242

2850

87.9%

2045

1063

52.0%

3415

3065

89.8%

1939

1143

58.9%

804

377

46.9%

1824

523

28.7%

3600

2844

79.0%

2120

699

33.0%

Number of predictions of action
that led to incorrect answer

Number of predictions that were
correct

Accuracy

468

343

73.3%

544

430

79.0%

673

536

79.6%

720

583

81.0%

350

269

76.9%

415

325

78.3%

390

232

59.5%

432

275

63.7%

The effects of implementing techniques to the current system described in Section 3 are shown
in Table 2. The treatment of confining training examples to four decision trees increased the
number of erroneous answer predictions while the overall prediction rate was lower because the
system confronted more conflicting predictions. The introduction of quali ty measures for
decision trees and leaf nodes exhibited its positive effect in resolving the problem of conflicting
predictions. All new versions with this kind of treatment achieved higher prediction rates
without significantly dropping the overall prediction accuracy.

Table 2. Performance of new versions created by three kinds of treatment.

C4.5-
IOAM

+LIMIT +LQTY +LQTY
+LIMIT

+TQTY +TQTY
+LIMIT

+LQTY
+TQTY

+LQTY
+TQTY
+LIMIT

Number of
predictions made
Prediction rate

28700

94%

25911

85%

30093

99%

30208

99%

30994

99%

29635

97%

30078

99%

299924

98%

Number of
predictions that
were correct
Prediction accuracy

26507

92%

23945

92%

27543

92%

27599

91%

27496

91%

27261

92%

27528

92%

27501

92%
Number of error
predictions made
Prediction rate

1999

55%

2106

58%

2173

60%

2416

67%

2300

61%

2201

61%

2160

60%

2001

55%

Number of error
predictions that
were correct
Prediction accuracy

1347

67%

1393

66%

1426

66%

1536

64%

1463

64%

1426

65%

1417

66%

1365

68%

6

5 Conclusions

We evaluated three techniques for improving the prediction performance of inductive based
subtraction skill modelli ng systems. We have seen how different techniques can be usefully
employed for this purpose. The method of confining training examples to erroneous answers
enables some decision trees to capture more students’ erroneous actions. It could be applied to
situations where the proportion of student errors is low.

Techniques of employing quali ty measures on decision trees and leaf nodes in resolving
conflicting predictions have been shown effective for this purpose. These two methods cover two
aspects of resolving conflicts: adopting a decision from a point of view at global level and
considering the judgement based on local experience. It is quite similar to consulting human
experts. While an engineer might have good reputation of knowledge but lacks suff icient
experience for a particular case, an ordinary people could have encountered numerous similar
examples and could be an expert for that case.

C4.5-IOAM employs machine learning techniques for agent modelli ng. It uses decision trees
to model different aspects of a student’s response to a subtraction problem. Although the
techniques explored in this paper help the system to improve the general prediction performance,
these techniques do not learn how to resolve conflicting predictions. This suggests a possible
exploration on applying inductive learning in resolving conflicting predictions. Stacked
generalization (Wolpert, 1992), which is a method that learns the outputs of others inductive
learners, could be one of the considerations. We will see whether this method works in future
studies.

References
Chiu, B., Webb, G. I., and Kuzmycz, M. (1997). A comparison of First-order and Zeroth-order induction for Input-

Oput Agent Modelling. Manuscript submitted for publication.
Desmoulins, C., and Van Labeke, N. (1996). Towards student modelli ng in geometry with inductive logic

programming. In Brna, P., Paiva, A., and Self, J., eds., Proceedings of the European Conference on Artificial
Intelligence in Education. Manuscript submitted for publication.

Gilmore, D., and Self, J. (1988). The application of machine learning to intelligent tutoring systems. In Self, J., ed.,
Artificial Intelligence and Human Learning: Intelligent Computer-aided Instruction. London: Chapman and Hall .
179-196.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection.
Proceedings of 14th International Joint Conference on Artificial Intelligence, 1137-1143.

Kuzmycz, M. (1994). A dynamic vocabulary for student modelling. Proceedings of the Fourth International
Conference on User Modelling, 185-190.

Webb, G. I., Chiu, B., and Kuzmycz, M. (1997). A comparative evaluation of the use of C4.5 and Feature Based
Modelling as induction engines for Input/Output Agent Modelling. Manuscript submitted for publication.

Webb, G. I., and Kuzmycz, M. (1996). Feature Based Modelli ng: A methodology for producing coherent,
dynamically changing models of agent's competencies. User Modeling and User-Adapted Interaction 5(2):117-
150.

Wolpert, D. (1992). Stacked generalization. Neural Networks 5:241-259.

