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Abstract. SuperParent-One-Dependence Estimators (SPODEs) loosen
Naive-Bayes’ attribute independence assumption by allowing each at-
tribute to depend on a common single attribute (superparent) in addition
to the class. An ensemble of SPODEs is able to achieve high classifica-
tion accuracy with modest computational cost. This paper investigates
how to select SPODEs for ensembling. Various popular model selection
strategies are presented. Their learning efficacy and efficiency are the-
oretically analyzed and empirically verified. Accordingly, guidelines are
investigated for choosing between selection criteria in differing contexts.

1 Introduction

One-Dependence Estimators (ODEs) provides a simple, yet powerful, alterna-
tive to Naive-Bayes classifiers (NB). As depicted in Figure 1, an ODE is sim-
ilar to an NB except that each attribute is allowed to depend on at most one
other attribute in addition to the class. Both theoretical analysis and empirical
evidence have shown that ODEs can improve upon NB’s accuracy when its at-
tribute independence assumption is violated (Sahami, 1996; Friedman, Geiger, &
Goldszmidt, 1997; Keogh & Pazzani, 1999). A SuperParent-One-Dependence Es-
timator (SPODE) is an ODE where all attributes depend on the same attribute
(the superparent) in addition to the class (Keogh & Pazzani, 1999). Averaged
One-Dependence Estimators (AODE) ensembles all SPODEs that satisfy a min-
imum support constraint (Webb, Boughton, & Wang, 2005) and estimate class
conditional probabilities by averaging across them. This ensemble has demon-
strated very high prediction accuracy with modest computational requirements.
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Fig. 1. Examples of NB, ODE and SPODE. Assuming there are four attributes
X1 · · ·X4 and one class C. An arc points from a parent to a child.



This paper addresses how to select an ensemble of SPODEs so as to mini-
mize classification error. A data sample of m attributes can potentially have m
SPODEs, each alternatively taking a different attribute as the superparent.

Finding answers to this SPODE selection problem is of great importance. Its
solution will further improve classification accuracy while reducing classification
time, albeit at a cost in additional training time.

The following notations will be used throughout the paper. The training
data D are composed of n instances. Each instance X < X1, X2, · · · , Xm, C >
is composed of m attributes and can have one class. The attributes are nominal
rather than numeric. Numeric attributes will be discretized beforehand. Each
attribute Xi (i ∈ [1,m]) takes vi distinct values. The average number of values
for an attribute is v. The class variable takes c values. The parents of Xi are
referred to by Π(i). 1 φir is the r-th joint state (jointly instantiated values) of
the parents of Xi. |φi| is the number of joint states of Xi’s parents.

2 SuperParent-One-Dependance Estimators (SPODE)

The notion of k-dependence estimators was introduced by Sahami (1996). A k-
dependence estimator is a Bayesian network in which each attribute has the class
C and a maximum of k other attributes as parents. For example, naive-Bayes
classifiers are 0-dependence estimators.

A One-Dependence Estimator (ODE) allows each attribute to depend on
at most one other attribute in addition to the class, such as TAN (Friedman
et al., 1997) and SP-TAN (Keogh & Pazzani, 1999). ODEs have attracted much
attention for providing a good trade-off between classification efficiency and
efficacy (Sahami, 1996; Friedman et al., 1997; Keogh & Pazzani, 1999).

A SuperParent-One-Dependence Estimator (SPODE) requires all attributes
to depend on the same attribute, namely the superparent, in addition to the
class (Keogh & Pazzani, 1999). A SPODE with superparent Xp will estimate
the probability of each class label c given an instance x as follows. Denote the
value of Xp in x by xp.

P (c |x)=P (c,x)/P (x)
∝P (c,x)
=P (c, xp,x)
=P (c, xp)× P (x | c, xp)

=P (c, xp)×
m∏

i=1

P (xi | c, xp). (1)

Averaged One-Dependence Estimators (AODE) uses an ensemble of all
SPODEs. Since the equality (1) holds for every SPODE, it also holds for the

1 For a SPODE, the class is the root and has no parents. The superparent has a single
parent: the class. Other attributes have two parents: the class and the superparent.



mean over any subset. A group of k SPODEs corresponding to the superparents
Xp1 , · · · , Xpk

estimate the class probability by averaging their results as follows.

P (c |x)∝
∑k

i=1 P (c, xpi)×
∏m

j=1 P (xj | c, xpi)
k

. (2)

To classify an instance where Xpi
= xpi

, AODE selects every SPODE i for
which there are 30 or more training instances that satisfy Xpi = xpi , i ∈ [1, m].
The reason behind is that 30 is a widely utilized minimum on sample size for
statistical inference purposes. With fewer training data, a SPODE may incur
unreliable probability estimation and hence sub-optimal classification accuracy.

This simple selection criterion of AODE has rendered surprisingly good per-
formance. The resulting SPODE ensemble has been demonstrated to deliver
competitive prediction accuracy together with improved efficiency in compar-
ison to TAN (Friedman et al., 1997) and SP-TAN (Keogh & Pazzani, 1999).
However, one should expect that selecting out poorly predictive SPODEs would
both improve classification accuracy and classification speed. The goal here is to
find out what selection criteria for SPODEs suit what scenarios and why.

3 Selecting SPODEs

The general problem for model selection is, given training instances, how to
decide which the best explanatory model(s) is within some model space. Given
m attributes, the model space here consists of m SPODEs, each appointing one
superparent. To select SPODEs, two key factors are the ordering metric and the
stopping criterion. The former orders each SPODE on merit. The latter decides
when SPODEs of sufficient merit are no longer to be found for the ensemble.

Five ordering metrics are studied here, including popular information-
theoretic metrics and accuracy-based empirical metrics: Minimum Description
Length (MDL), Minimum Message Length (MML), Leave One Out (LOO),
Backward Sequential Elimination (BSE), and Forward Sequential Addition
(FSA). The stopping criterion coupled with each metric may vary.

3.1 Information-theoretic metrics

Information-theoretic metrics have gained considerable popularity in the ma-
chine learning community. They provide a combined score for a proposed ex-
planatory model and for the data given the model: I(h) + I(D|h), where h is a
SPODE and D are the training data. All such metrics aim to find a balance be-
tween goodness of fit (I(D|h)) and model simplicity (I(h)), and thereby achieve
good modeling performance without overfitting the data.

The first term, I(D|h), is shared by information-theoretic metrics and is: 2

I(D|h) = n(
m+1∑

i=1

H(Xi)−
m+1∑

i=1

H(Xi,Π(i)))

2 For uniformity, Xi represents the class variable when i = m + 1.



where H(Xi) is the entropy of Xi, and H(Xi,Π(i)) is the mutual information
between Xi and its parent variables: 3

H(Xi) = −
vi∑

j=1

P (Xi = xij) log P (Xi = xij),

H(Xi, Π(i)) = H(Xi)−H(Xi|Π(i)) =
∑

j≤vi

∑

m≤|φi|
P (xij , φir) log

P (xij , φir)
P (xij)P (φir)

.

Minimum description length (MDL) Suzuki (1996) developed MDL for
learning Bayesian networks and calculates I(h) as follows. For any root node Xi

(where Π(i) = ∅), the product term on the right should be replaced by 1.

IMDL(h) =
1
2

log n(
m+1∑

i=1

(vi − 1)
∏

j∈Π(i)

vj).

From the perspective of ordering models, MDL differs only insignificantly
from Akaike’s information criterion (AIC) (Akaike, 1974) and the Bayesian in-
formation criterion (BIC) (Schwarz, 1978), which respectively calculate I(h)
by 2(

∑m+1
i=1 (vi − 1)

∏
j∈Π(i) vj) and log n(

∑m+1
i=1 (vi − 1)

∏
j∈Π(i) vj). Hence, the

analysis and evaluation of MDL here also represent those of AIC and BIC.

Minimum message length (MML) The MDL metric above is not strictly
efficient for encoding Bayesian networks. The MML metric is. Also, it is a basic
principle of MML that there is a relation between the precision of estimated
parameters and the volume of data. So the MML score for the model I(h) takes
the data volume into account. The result is: 4

IMML(h)=log(m + 1)! + Cm+1
2 − log(m− 1)! +

m+1∑

i=1

vi − 1
2

(log
π

6
+ 1)

−log
m+1∏

i=1

|φi|∏

j=1

(vi − 1)!
(Sij + vi − 1)!

vi∏

l=1

αijl!

where Sij is the number of training instances where the parents Π(i) take their
joint j-th value, and αijl is the number of training instances where Xi takes its
l-th value and Π(i) take their j-th joint value. For any root Xi, |φi| should be
treated as 1 and every instance should be treated as matching the parents for
the purposes of computing Sij and αijl.

3.2 Accuracy-based empirical metrics

In contrast to theoretic metrics, empirical metrics select individual SPODEs, or
their ensembles, strictly on how well they perform in predictive tests.
3 Generally the log base does not matter and this paper assumes natural logs (base-e).
4 Cm+1

2 is combination of 2 out of (m+1). See Korb and Nicholson (2004, Chapter 8)
for details. Discrepancies in the first part of the formula are due to the restriction
here to SPODEs, rather than the full range of Bayesian networks.



Leave one out (LOO) LOO scores each individual SPODE with superparent
Xp by its accuracy on leave-one-out cross validation in the training data. Given
this SPODE, LOO loops through the training data n times, each time training
the SPODE from (n − 1) instances and using it to classify the remaining 1
instance. The misclassifications are summed and averaged over n iterations. The
resulting classification error rate is taken as the metric value of the SPODE.

Backward sequential elimination (BSE) Backward sequential elimination
starts out with a full ensemble including every SPODE. It then uses hill-climbing
search to iteratively eliminate SPODEs whose individual exclusion most low-
ers the classification error. In each iteration, suppose the current ensemble is
Ecurrent involving k SPODEs. BSE eliminates each member SPODE in turn
from Ecurrent and obtains an ensemble Etest of size (k − 1). It then calculates
the leave-one-out error of Etest.

5 The Etest which yields the lowest error is re-
tained and the corresponding eliminated SPODE is permanently deleted from
the ensemble. The same process is applied to the new SPODE ensemble of size
(k − 1) and so on, until the ensemble is empty. The order of the elimination
produces a ranking order for SPODEs.

Forward sequential addition (FSA) Forward sequential addition begins
with an empty ensemble of SPODEs. It then uses hill-climbing search to itera-
tively add SPODEs most helpful for lowering the ensemble’s classification error.
In each iteration, suppose the current ensemble is Ecurrent with k SPODEs.
FSA in turn adds each candidate SPODE, one that has not been included into
Ecurrent, and obtains an ensemble Etest of size (k + 1). It then calculates the
leave-one-out accuracy of Etest. The Etest who obtains the lowest error is re-
tained and the corresponding added SPODE is permanently included into the
ensemble. The same process is applied to the new SPODE ensemble of size (k+1)
and so on, until every SPODE has been included. The order of addition produces
a ranking order for SPODEs.

3.3 Stopping criterion

For MDL, MML and LOO, the lower its metric value, the higher priority is
given to using a SPODE. The stopping criterion used here is the mean value of a
metric over all candidate SPODEs. SPODEs whose metric values are lower than
the mean will be included in the ensemble, while those of higher values will not.

For BSE, the process produces m SPODE ensembles, from size m to 1. Each
ensemble is the one that achieves the lowest classification error among all ensem-
bles of its size. Across these m ensembles, the one with the lowest classification
error, Emin, gives the stopping point. Following the reverse order of the elimi-
nation order, one should first include the last SPODE to be eliminated and so
on until the ensemble reaches the set of SPODEs that delivered Emin.

For FSA, the stopping criterion is similar to BSE’s, being the ensemble that
achieves the lowest classification error during the addition process. The difference
5 A SPODE ensemble does classification by Formula 2.



is that one should follow the same order of the addition order to include SPODEs
until the ensemble reaches the set of SPODEs that delivered Emin.

4 Time complexity analysis

Recall that the number of training instances and attributes are n and m. The
average number of values for an attribute is v. The number of classes is c.

4.1 Training overhead

MDL The complexity of calculating I(D|h) is O(mv2c). The dominating part is
from H(Xi, Π(i)) which iterates through each value (O(v)), and then each joint
value of the superparent and the class (O(vc)). The complexity of calculating
I(h) is O(m). 6 Since the selection repeats for each attribute (O(m)), the overall
complexity is O(m ∗ (mv2c + m)) = O(m2v2c).

MML Although it looks complex, MML for SPODEs can be computed in poly-
nomial time despite that it is exponential for Bayesian networks (Cooper & Her-
skovits, 1992; Korb & Nicholson, 2004). The dominating complexity of MML for
SPODEs is from

∏m+1
i=1

∏|φi|
j=1

(vi−1)!
(Sij+vi−1)!

∏vi

l=1 αijl!. MML iterates through each
attribute (O(m)); and then each joint value of the superparent and the class
(O(vc)) for which two factorials are calculated (O(v) + O(n)). On top of that it
loops through each attribute value (O(v)) for which a third factorial is calculated
(O(n)). Hence the complexity is O(m∗vc∗ (v+n)∗v ∗n) = O(mv3n2c). This re-
peats for each attribute (O(m)) and the overall complexity is hence O(m2v3n2c).

LOO To classify an instance, a SPODE will multiply the conditional probabil-
ity of each attribute value given each class label and one (constant) superparent
value. This results in O(mc). To do leave-one-out cross validation, the classifica-
tion will repeat n times. Hence the complexity is O(mcn). This repeats for each
attribute (O(m)) and the overall complexity is hence O(m2cn).

BSE The hill climbing procedure of reducing a SPODE ensemble of size m to 0
will render a complexity of O(m3). In the first round, it alternatively eliminates
each of m SPODEs, each time testing a SPODE set of size (m−1). In the second
round, it alternatively eliminates each of (m− 1) SPODEs, each time testing a
SPODE set of size (m− 2). Following this line of reasoning, the total number of
probing a SPODE is m(m−1)+(m−1)(m−2)+ · · ·+2∗1+1∗0 = O(m3). As
explained for LOO, to test each SPODE by leave-one-out cross validation will
incur complexity of O(mcn). As a result, the overall complexity is O(m4cn).

6 Although MDL has an extra loop
∏

j∈Π(i)
vj , in case of SPODE, |Π(i)| is of maxi-

mum value 2 (the superparent and the class). Hence it can be treated as a constant
and does not increase the order of the complexity.



FSA The hill climbing procedure of increasing a SPODE ensemble from empty
to size m will render a complexity of O(m2). In the first round, it alternatively
adds each of m SPODEs, each time testing a SPODE set of size 1. In the second
round, it alternatively adds each of (m−1) SPODEs, each time testing a SPODE
set of size 2. Following this line of reasoning, the total number of probing a
SPODE is m∗1+(m−1)∗2+ · · ·+2∗(m−1)+1∗m = O(m2). As explained for
LOO, to test each SPODE by leave-one-out cross validation will incur complexity
of O(mcn). As a result, the overall complexity is O(m3cn).

4.2 Classification overhead

No matter what selection metric is applied, the result is a linear combination of
SPODEs. Hence, each metric’s complexity is of the same order O(m2c), resulting
from an O(mc) classifying algorithm applied over an O(m) sized ensemble.

5 Experiments

Experiments are conducted to find out the classification efficacy and efficiency
for each selection metric.

5.1 Design and results

Experimental data involve a comprehensive suite of 41 often-used data sets from
the UCI machine learning repository (Blake & Merz, 2004). The statistics of
each data set are presented in Table 3 in Appendix. To test a selection strategy,
a 3-fold cross validation is conducted. Each candidate selection metric selects
SPODEs according to evidence offered by the training data, and uses the result-
ing SPODE ensemble to classify the test data.

The classification error rate on each data set produced by each selection
metric is presented in Table 3 in Appendix. The resulting win/lose/draw record
of each metric compared against each other metric is presented in Table 1. A
binomial sign test can be applied to each record to suggest whether the wins
are by chance or systematic. The training time and classification time of each
metric on each data set are presented in Table 4 in Appendix.

NB AODE MDL MML LOO BSE FSA
NB 0/0/41 10/27/4 13/25/3 11/27/3 9/26/6 8/28/5 8/29/4
AODE 27/10/4 0/0/41 17/14/10 11/19/11 10/22/9 10/24/7 11/25/5
MDL 25/13/3 14/17/10 0/0/41 11/16/14 13/20/8 8/25/8 10/25/6
MML 27/11/3 19/11/11 16/11/14 0/0/41 17/19/5 12/24/5 13/21/7
LOO 26/9/6 22/10/9 20/13/8 19/17/5 0/0/41 9/23/9 10/24/7
BSE 28/8/5 24/10/7 25/8/8 24/12/5 23/9/9 0/0/41 13/11/17
FSA 29/8/4 25/11/5 25/10/6 21/13/7 24/10/7 11/13/17 0/0/41
Table 1. Win-lose-draw record of each method in column compared against each in
row. A bold face indicates that the wins against losses are statistically significant using
a two-tailed binomial sign test at the critical level 0.05, and hence the corresponding
method has a systematic (instead of by chance) advantage over its counterpart.



5.2 Observations and analysis

Selection makes a difference Compared with AODE, all selection metrics ex-
cept MDL win more often than not across the 41 data sets. In particular, LOO,
BSE and FSA achieve win/lose/tie records of 22/10/9, 24/10/7 and 25/11/5
respectively, all of which are statistically significant at the 0.05 critical level ac-
cording to the binomial sign test. This suggests that their advantages over AODE
is systematic rather than due to chance. Hence model selection for SPODEs is
advisable.

MML is more effective than MDL Among the information-theoretic met-
rics, MML wins against MDL more often than not. It also achieves lower arith-
metic and geometric mean error than MDL. Compared with AODE, MML out-
performs AODE with a win/lose/tie record of 19/11/11. By contrast, MDL loses
to AODE (and so also AIC and BIC). The plausible explanation lies in MML
providing a more efficient encoding of network structure, as well as taking the
precision of its parameter estimates more seriously.

Empirical metrics are more effective than theoretic metrics All three
empirical metrics outperform their theoretic counterparts. Compared with the
most effective theoretic metric MML, BSE achieves a win/lose/draw record of
24/12/5, FSA of 21/13/7 and LOO of 19/17/5. A possible reason is that not only
do empirical metrics consider interactions among the class, the superparent and
other attributes within the model, they also consider the interaction’s impact
on the classification accuracy. When selecting a classifier it is always desirable
to optimize the thing that one wants to optimize, that is, the accuracy.

Measuring ensemble outperforms measuring single SPODEs MDL,
MML and LOO measure each individual SPODE in isolation. 7 BSE and FSA
measures a SPODE ensemble as a whole. BSE and FSA outperform the best the-
oretic metric MML with their win/lose/tie records being 24/12/5 and 21/13/7 re-
spectively. They also outperform their empirical peer LOO with the win/lose/tie
records being 23/9/9 and 24/10/7. Most of these wins are statistically signifi-
cant at the 0.05 critical level. The reason is that the eventual classification task
is carried out by a team of SPODEs. A SPODE that achieves high accuracy
in isolation does not necessarily mean it is the most valuable one to include
in an ensemble. Measuring the collective merit of a SPODE ensemble directly
assesses what one is trying to learn, giving better results. For example, consider
five SPODEs A,B, C,D, E and their classification on each training instances as
illustrated in Table 2, where X indicates a misclassification and

√
indicates a

correct classification. Using a majority vote, this ensemble will misclassify in-
stance 1. However, A, B and C are redundant, and replicate each other’s errors.
Hence it is better to eliminate two out of the three A, B or C instead of either
D or E, despite their lower individual errors.
7 Note that the information-theoretic metrics can be extended to apply to ensembles

rather than individual models. It is a future work.



Instance ID. A B C D E

1 X X X
√ √

2
√ √ √

X
√

3
√ √ √

X
√

4
√ √ √ √

X
5

√ √ √ √
X

Table 2. Measuring a SPODE in isolation is less effective.

Backward elimination and forward addition Although previous work sug-
gested that backward elimination tends to be more effective than forward ad-
dition for feature selection(Koller & Sahami, 1996; Kohavi & John, 1996; Wu
& Urpani, 1999), there is no significant difference of performance between BSE
and FSA. In terms of classification accuracy, BSE wins slightly more than not
compared with FSA (win 13 loss 11). It also achieves the lowest arithmetic and
geometric mean error among alternative metrics. In terms of training efficiency,
FSA is faster than BSE by an order of m.

Theoretic metrics are more efficient for training Consistent with the
analysis of training time complexity in Section 4, for training efficiency, from the
fastest to the slowest are MDL, MML, LOO, FSA and BSE. In general, empirical
metrics are slower than theoretic ones because they need to loop through training
data for leave-one-out cross validation. Metrics that measure SPODE ensembles
are slower than those that measure individual SPODEs because they need to
probe different aggregations of individual SPODEs.

All metrics are fast for classification Consistent with the analysis of classi-
fication time complexity in Section 4, for classification efficiency, every selection
metric is equally fast. In many real-world scenarios, classification efficiency is
more important than training efficiency. The experimental results suggest that
when training time is not taken into consideration, high classification accuracy
and high classification efficiency are not necessarily exclusive. This observation
suggests that metrics like BSE hold considerable promise as practical, accurate
and feasible selection strategies.

6 Conclusion

An ensemble of SuperParent-One-Dependence-Estimators (SPODEs) retains the
simplicity and direct theoretical foundation of naive Bayes while alleviating the
limitations of its attribute independence assumption. In consequence it delivers
effective classification with modest computational overhead (Webb et al., 2005).
This paper focuses on how to select SPODEs for ensembling so as to further
improve the classification accuracy. Popular information-theoretic metrics like
MDL and MML, and accuracy-based empirical metrics like LOO, BSE and FSA
have been applied for model selection.

Evidence obtained from theoretical analysis and empirical trials suggests that
appropriate selection of the SPODEs to be included in an ensemble can fur-
ther improve the classification accuracy. Empirical metrics that involve testing



SPODEs’ classification performance on training data can outperform theoretic
metrics at a cost of higher training time overhead. Metrics that measure the
ensemble as a whole can outperform metrics that measure SPODEs in isolation,
also at a cost of higher training time overhead. For classification time, various
selection criteria all produce a linear combination of SPODEs. Hence, they have
the same order of time complexity for classification.

As a result, if the training time is limited, it is suggested to employ MML,
LOO, FSA and BSE in that order, corresponding to the increasing order of time
allowance. If the training time is not a concern, given a choice amongst the
metrics studied here, BSE is the best.
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Data Set Size Att NB AODE MDL MML LOO BSE FSA

adult 48842 14 16.2 14.8 14.7 14.8 14.7 14.0 14.0
anneal 898 38 4.1 3.5 3.5 3.5 3.1 3.0 2.4
balance-scale 625 4 24.3 27.5 25.8 24.3 27.2 24.0 24.0
bands 1078 36 28.4 27.8 26.5 26.2 27.5 26.7 27.5
bcw 699 9 2.7 3.4 3.0 3.6 3.3 3.0 3.0
bupa 345 6 42.9 42.9 42.9 42.9 42.9 42.9 42.9
chess 551 39 13.1 12.2 12.7 13.2 12.0 11.1 11.8
cleveland 303 13 16.5 17.2 17.2 17.5 16.8 17.2 16.8
crx 690 15 13.9 12.8 12.9 13.2 13.0 13.9 12.9
echo74 74 6 24.3 25.7 23.0 23.0 24.3 23.0 23.0
german 1000 20 26.4 26.0 26.9 27.1 26.2 25.3 25.5
glass 214 9 23.4 22.9 22.9 22.4 22.9 22.9 22.4
heart 270 13 17.0 16.7 15.9 16.3 16.7 17.4 17.4
hepatitis 155 19 14.8 14.2 13.5 13.5 15.5 15.5 14.8
horse-colic 368 21 23.9 21.5 22.0 20.9 21.5 20.7 20.9
house-votes-84 435 16 9.9 6.2 5.7 5.7 5.5 4.8 6.0
hungarian 294 13 16.3 16.3 16.3 16.3 16.3 16.0 16.0
hypo 3772 29 1.9 2.0 2.2 2.2 1.9 1.2 1.2
ionosphere 351 34 9.7 9.7 10.3 8.8 9.4 9.7 9.1
iris 150 4 5.3 6.0 6.0 6.0 6.0 6.0 6.0
kr-vs-kp 6393 36 12.3 8.8 8.8 8.6 7.0 5.4 5.3
labor-neg 57 16 14.0 10.5 10.5 10.5 12.3 12.3 14.0
led 1000 7 26.6 26.7 26.3 26.2 26.8 26.8 26.8
letter-recognition 20000 16 26.1 12.1 13.9 12.3 11.7 11.4 11.3
lyn 296 18 15.5 13.5 12.2 12.8 12.2 12.2 12.2
mfeat-mor 2000 6 32.0 31.5 31.5 31.4 30.5 30.7 30.8
musk1 476 166 18.9 18.3 17.2 17.4 18.3 16.6 16.0
new-thyroid 215 5 7.0 7.0 8.4 8.4 8.4 6.5 6.5
pendigits 10992 16 12.6 2.6 3.0 2.6 2.7 2.6 2.6
pid 768 8 25.0 24.7 25.0 24.5 24.6 24.9 24.7
post-operative 90 8 30.0 27.8 32.2 26.7 28.9 28.9 28.9
promoters 106 57 9.4 17.9 15.1 16.0 15.1 9.4 9.4
ptn 339 17 52.2 53.4 52.8 52.8 53.4 52.2 54.3
sign 12546 8 36.3 28.9 28.5 28.5 28.6 28.0 28.1
sonar 208 60 26.9 26.0 27.4 28.8 26.9 27.4 28.8
soybean 683 35 11.3 7.6 7.8 7.6 7.5 7.5 8.2
thyroid 9169 29 11.7 8.3 8.7 8.3 8.3 7.9 8.0
ttt 958 9 29.1 25.3 25.5 25.5 26.6 25.6 25.3
vehicle 846 18 39.7 31.3 31.7 31.3 30.9 31.3 31.6
vowel-context 990 11 42.3 28.4 32.8 30.7 26.4 24.1 24.1
wine 178 13 2.2 2.8 2.8 2.8 2.2 3.9 3.9

Arithmetic Mean - - 19.9 18.1 18.2 17.9 18.0 17.4 17.5
Geometric Mean - - 20.0 18.2 18.3 18.0 18.0 17.5 17.6

Table 3. Data sets and classification error (%)



Training Time Classification Time
Data Set MDL MML LOO BSE FSA MDL MML LOO BSE FSA

adult 3,320 11,630 12,640 133,530 114,240 580 570 670 450 460
anneal 240 360 1,650 78,220 53,290 40 20 40 40 40
balance-scale 20 30 20 60 70 30 0 30 20 10
bands 90 580 1,150 37,380 30,110 20 10 40 40 10
bcw 50 50 70 440 500 30 10 20 20 30
bupa 10 40 20 50 70 10 0 0 0 10
chess 40 670 1,120 50,380 40,780 30 40 40 30 20
cleveland 10 50 140 590 1,070 20 30 40 20 10
crx 60 130 400 3,060 1,770 30 10 40 20 10
echo74 10 10 20 20 30 0 0 0 0 10
german 10 430 450 8,340 6,770 20 60 20 40 20
glass 20 80 50 190 150 10 0 0 10 10
heart 20 90 70 600 470 20 10 10 10 10
hepatitis 20 60 80 810 1,350 0 0 0 10 20
horse-colic 30 110 220 3,390 2,920 0 20 10 40 10
house-votes-84 20 90 140 1,730 1,410 30 20 10 20 20
hungarian 20 50 80 870 560 10 20 10 20 20
hypo 260 5,080 4,280 181,750 126,870 110 250 180 90 80
ionosphere 220 470 670 18,340 16,090 10 10 20 10 10
iris 20 0 10 20 0 10 10 20 0 0
kr-vs-kp 350 3,510 5,590 224,960 169,020 310 120 90 80 80
labor-neg 10 20 30 150 270 0 10 0 10 0
led 20 80 80 760 610 30 40 10 30 30
letter 4,290 11,930 21,790 1,282,030 760,180 3,440 5,650 3,830 4,300 4,180
lyn 60 40 80 1,630 1,420 10 10 10 10 0
mfeat-mor 230 270 270 1,130 950 60 60 50 60 40
musk1 1,220 11,040 138,540 18,842,398 15,084,140 380 170 340 60 50
new-thyroid 0 30 40 20 50 10 10 10 0 20
pendigits 2,050 3,820 8,250 252,520 165,620 610 780 780 840 830
pid 40 70 120 360 340 10 30 20 10 20
post-operative 10 0 30 40 30 10 0 0 0 0
promoters 290 370 1,190 34,050 37,250 10 10 0 0 0
ptn 90 80 200 10,230 6,470 50 30 40 20 20
sign 770 3,260 1,520 6,750 6,010 140 280 120 140 160
sonar 160 600 1,390 106,300 72,010 40 20 30 10 20
soybean 540 660 2,260 594,910 252,010 230 260 360 130 100
thyroid 1,090 6,540 15,470 2,591,640 1,302,000 3,920 750 1,340 680 910
ttt 10 100 60 640 480 20 10 30 20 30
vehicle 110 300 390 8,550 5,790 40 40 50 10 30
vowel-context 300 360 400 3,960 2,940 50 70 40 40 20
wine 30 60 60 440 370 0 10 0 10 0

Arithmetic Mean 394 1,540 5,391 597,152 445,524 253 230 204 179 179

Table 4. Training and classification time (milliseconds)




