
Removing trivial associations in association rule discovery∗

Geoffrey I. Webb and Songmao Zhang
School of Computing and Mathematics, Deakin University

Geelong, Victoria 3217, Australia

Abstract

Association rule discovery has become one of the
most widely applied data mining strategies. Tech-
niques for association rule discovery have been dom-
inated by the frequent itemset strategy as exempli-
fied by the Apriori algorithm. One limitation of this
approach is that it provides little opportunity to de-
tect and remove association rules on the basis of rela-
tionships between rules. As a result, the association
rules discovered are frequently swamped with large
numbers of spurious rules that are of little interest to
the user. This paper presents association rule discov-
ery techniques that can detect and discard one form
of spurious association rule: trivial associations.

1 Introduction

We characterize the association rule discovery task
as follows. A dataset is a finite set of records where
each record is an element to which we apply Boolean
predicates called conditions. An itemset is a set of
conditions. The name itemset derives from associa-
tion rule discovery’s origins in market basket analy-
sis where each condition denotes the presence of an
item in a market basket. cs(I) denotes the set of
records from a dataset that satisfy all conditions in
itemset I.

An association rule consists of itemsets called the
antecedent and consequent and associated statistics
describing the frequency with which the two co-occur
within the data set. An association rule with an-
tecedent A, consequent C, and statistics S is denoted
as A → C[S].

The statistics employed may vary considerably. We
utilize the following (where D is the dataset from
which associations are to be discovered):

∗Prepublication draft of Webb, G. I. and S. Zhang (2002).
Removing Trivial Associations in Association Rule Discov-
ery. In Congress Proceedings, NAISO Academic Press,
Canada/The Netherlands.

coverage = |cs(antecedent)|
|D| .

support = |cs(antecedent∪consequent)|
|D| .

confidence = support
coverage .

lift = confidence
|cs(consequent)|/|D|) .

The task involves finding all association rules that
satisfy a set of user defined constraints with respect
to a given dataset.

The frequent itemset strategy, as exemplified by the
Apriori algorithm [1], has become the standard ap-
proach to association rule discovery. This strategy
first discovers all frequent itemsets. A frequent item-
set is an itemset whose support exceeds a user de-
fined threshold. The association rules are then gen-
erated from the frequent itemsets. If there are rel-
atively few frequent itemsets this approach can be
very efficient. However, one limitation of this ap-
proach is that it provides little opportunity to detect
and remove association rules on the basis of rela-
tionships between rules. As a result, the association
rules discovered are frequently swamped with large
numbers of spurious rules that are of little interest to
the user. This paper presents association rule discov-
ery techniques that can detect and discard one form
of spurious association rules: trivial associations.

Consider an association between three
items, say tomatoes, carrots, and cucumber,
{tomatoes, carrots} → {cucumber} [coverage =
0.100, support = 0.050, confidence = 0.500,
lift = 2.00]. Suppose that another item, always ap-
pears in a record whenever the antecedent appears,
say lettuce. In this case, the following association is
entailed {tomatoes, carrots, lettuce} → {cucumber}
[coverage = 0.100, support = 0.050,
confidence = 0.500, lift = 2.00]. This as-
sociation adds nothing of interest to most
analyses beyond the first (and perhaps

{tomatoes, carrots} → {lettuce} [coverage = 0.100,
support = 0.100, confidence = 1.000, lift = 2.00]).

To formalise this notion, an association X → Y [S]
is trivial if and only if there exists another associ-
ation Z → Y [S] such that Z is a proper subset of
the conditions in X. Note, that the consequent and
the statistics must be identical for both the trivial
association and the more general form that makes it
trivial.

OPUS AR is an association rule discovery that pro-
vides an alternative to the frequent itemset approach
by finding associations without first finding frequent
itemsets [7]. This avoids the need to retain the set
of frequent itemsets in memory, a requirement that
makes the frequent itemset strategy infeasible for
dense data [3]. It also enables comparisons between
association rules to be performed during search en-
abling properties that arise due to the relationship
of one association to another, such as triviality, to
be utilized during search.

This paper presents techniques for detecting and
discarding trivial associations during search. It is
demonstrated that these techniques often reduce the
time taken to find associations while also removing
the trivial associations from the list of associations
returned to the user.

2 The Apriori algorithm

The Apriori algorithm discovers associations in a
two-step process. First, it finds the frequent item-
sets {I ⊆ C : |cs(I)|

|D| ≥ min support}, where C is
the set of all available conditions, D is the dataset,
and min support is a user defined minimum support
constraint. In the second stage the frequent item-
sets are used to generate the association rules. The
minimum support constraint on the frequent item-
sets guarantees that all associations generated will
satisfy the minimum support constraint. Other con-
straints, such as minimum confidence are enforced
during the second stage.

The frequent itemset strategy limits the number of
rules that are explored, and caches the support val-
ues of the frequent items so that there is no need to
access the dataset in the second step. It is very suc-
cessful at reducing the number of passes through the
data. The frequent itemset approach has become the
predominant approach to association rule discovery.

However, the frequent itemset approach is only feasi-
ble for sparse data. For dense datasets where there
are numerous frequent itemsets, the overheads for
maintaining and manipulating the itemsets are too
large to make the system efficient and feasible [3].
This is also apparent in the experiments presented
below. Dense datasets are common in applications
other than basket data analysis or when basket data
is augmented by other customer information. An-
other problem of Apriori is that it lists numerous
association rules to the user and it may be very dif-
ficult for the user to identify the interesting rules
manually. Take the covtype dataset for example.
Covtype has 581,012 records containing 125 items.
The number of the association rules generated by
Apriori with the minimum support set to 0.01, min-
imum confidence 0.8, and maximum itemset size 5
is 88,327,710. Since the Apriori algorithm generates
itemsets by considering features of itemsets in iso-
lation, the inter-relationships between the itemsets
are not taken into account. In consequence, many
association rules generated may not be of interest to
the user.

3 The OPUS AR algorithm

OPUS AR extends the OPUS search algorithm to
association rule discovery [7]. To simplify the search
problem, the consequent of an association rule is re-
stricted to a single condition. Association rules of
this restricted form are of interest for many data
mining applications.

Whereas OPUS supports search through spaces
of subsets, the association rule search task
requires search through the space of pairs
〈I ⊆ conditions, c ∈ conditions〉, where I is the
antecedent and c the consequent of an association.
OPUS AR achieves this by performing OPUS search
through the space of antecedents, maintaining at
each node a set of potential consequents, each of
which is explored at each node.

The algorithm relies upon there being a set of user
defined constraints on the acceptable associations.
These are used to prune the search space. Such
constraints can take many forms, ranging from the
traditional association rule discovery constraints on
support and confidence to a constraint that only the
n associations that maximize some statistic be re-
turned. To provide a general mechanism for han-
dling a wide variety of constraints, we denote associ-
ations that satisfy all constraints target associations.

Note that it may not be apparent when an associ-
ation is encountered whether or not it is a target.
For example, if we are seeking the 100 associations
with the highest lift, we may not know the cutoff
value for lift until the search has been completed.
Hence, while we may be able to determine in some
circumstances that an association is not a target, we
may not be able to determine that an association is
a target until the search is completed. To accommo-
date this, pruning is only invoked when it is deter-
mined that areas of the search space cannot contain
a target. All associations encountered are recorded
unless the system can determine that they are not
targets. However, these associations may be sub-
sequently discarded as progress through the search
space reveals that they cannot be targets. When
seeking the n best associations with respect to some
measure, we can determine that a new association
is not a target if its value on that measure is lower
than the value of the nth best recorded so far, as the
value of the nth best for the search space cannot be
lower than the value of the nth best for the subset
of the search space examined so far.

Table 1 displays the algorithm that results from ap-
plying the OPUS search algorithm [6] to obtain ef-
ficient search for this search task. The algorithm is
presented as a recursive procedure with three argu-
ments: CurrentLHS, the set of conditions in the
antecedent of the rule currently being considered;
AvailableLHS, the set of conditions that may be
added to the antecedent of rules to be explored be-
low this point; AvailableRHS, the set of conditions
that may appear on the consequent of a rule in the
search space at this point and below. The initial
call to the procedure sets CurrentLHS to {}, and
AvailableLHS and AvailableRHS to the set of con-
ditions that are to be considered on the antecedent
and consequent of association rules, respectively.

The algorithm OPUS AR is a search procedure that
starts with the associations with one condition in the
antecedent and searches through successive associa-
tions formed by adding conditions to the antecedent.
It loops through each condition in AvailableLHS,
adds it to CurrentLHS to form the NewLHS. For
the NewLHS, it loops through each condition in
AvailableRHS to check if it could be the conse-
quent for NewLHS. After the AvailableRHS loop,
the procedure is recursively called with the argu-
ments NewLHS, NewAvailableLHS and NewAvail-
ableRHS. The two latter arguments are formed by
removing the pruned conditions from AvailabeLHS
and AvailableRHS, respectively. Step 2.1.3(b.1)ii.A

Table 1: The OPUS AR algorithm

OPUS AR(CurrentLHS, AvailableLHS, AvailableRHS)

1. SoFar := {}
2. FOR EACH P in AvailableLHS

2. 1 IF pruning rules cannot determine that

∀x ⊆ AvailableLHS: ∀y ∈ AvailableRHS:

¬target(x ∪ CurrentLHS ∪ {P} → y) THEN

2. 1.1 NewLHS := CurrentLHS ∪ {P}
2. 1.2 NewAvailableLHS := SoFar - P

2. 1.3 IF pruning rules cannot determine that

∀x ⊆ NewAvailableLHS: ∀y ∈ AvailableRHS:

¬target(x ∪ NewLHS → y) THEN

(a) NewAvailableRHS := AvailableRHS - P

(b) IF pruning rules cannot determine ∀y ∈
NewAvailableRHS: ¬target(NewLHS → y)

THEN

(b. 1) FOR EACH Q in NewAvailableRHS

i. IF pruning rules determine that ∀x
⊆ NewAvailableLHS: ¬target(x ∪
NewLHS → Q) THEN

A. NewAvailableRHS :=

NewAvailableRHS - Q

ii. ELSE IF pruning rules cannot

determine that ¬target(NewLHS
→ Q) THEN

A. IF NewLHS → Q is a potential

target THEN

A.1 record NewLHS → Q

A.2 tune the settings of the

measures

B. IF pruning rules determine

that ∀x ⊆ NewAvailableLHS:

¬target(x ∪ NewLHS → Q) THEN

NewAvailableRHS :=

NewAvailableRHS - Q

(c) IF NewAvailableLHS 6= {} and

NewAvailableRHS 6= {} THEN

OPUS AR(NewLHS, NewAvailableLHS,

NewAvailableRHS)

(d) SoFar := SoFar ∪ {P}

checks if the current association is a potential tar-
get and if yes Step 2.1.3(b.1)ii.A.1 records it. When
seeking the n associations with the highest value of
lift that satisfy all other constraints, the nth highest
value of lift recorded at Step 2.1.3(b.1)ii.A.1 is used
as a lower bound on the nth highest value of lift for
the search space. When the search is completed, the
nth highest value of lift recorded will be the nth high-

est value of lift for the search space. During search,
the pruning rules can discard associations that have
lower lift than the lower bound established by the nth

highest value of lift recorded at Step 2.1.3(b.1)ii.A.1.

To discard trivial association during search all that
is required is to incorporate another test at Step
2.1.3(b.1)ii.A. At this stage, triviality can be added
as another condition that prevents an association
from being a target and sections of the search space
can potentially be ignored when it can be determined
that they may only contain trivial rules. Any po-
tential target association already recorded at Step
2.1.3(b.1)ii.A.1. can not be trivial with respect to
the current association since for any condition set,
OPUS AR always investigates all of its proper sub-
sets before it. Therefore Step 2.1.3(b.1)ii.A only
needs to check if the current association is trivial
with respect to one of the recorded potential target
associations.

4 Search for Nontrivial Associ-
ation Rules

After giving a formal description of nontrivial asso-
ciation rule discovery based on OPUS AR, we will
present one pruning rule and one data access saving
rule adopted in OPUS AR for effectively removing
trivial associations.

4.1 Formal description

We first give a formal description of the association
rule discovery based on OPUS AR, then define triv-
ial association rules, and accordingly nontrivial as-
sociation rule discovery based on OPUS AR is pre-
sented.

Definition 1. A association rule discovery task
based on OPUS AR (abbreviated as ARO) is a 4-
tuple (C,D,A,M), where

C: nonempty set of conditions;

D: nonempty set of records, called the dataset, where
for each record d ∈ D, d ⊆ C. For any S ⊆ C, let
cs(S) = {d|d ∈ D ∧ S ⊆ d}, and let cover(S) =
|cs(S)|
|D| ;

A: set of association rules, where each association
rule takes the form

X → Y [coverage, support, confidence, lift]

where X ⊂ C, X 6= ∅, Y ⊂ C, |Y | = 1,
X ∩ Y = ∅, and coverage, support, confidence,
and lift are statistics for the association rule,
satisfying coverage(X → Y) = cover(X),
support(X → Y) = cover(X∪Y), confidence(X →
Y) = support(X→Y)

coverage(X→Y) , and lift(X → Y) =
confidence(X→Y)

cover(Y) ;

M: constraints, composed of maxAssocs denot-
ing the maximum number of target association
rules (which will consist of the association rules
with the highest values for lift of those that
satisfy all other constraints), maxLHSsize
denoting maximum number of conditions al-
lowed in the antecedent of association rule,
minCoverage denoting the minimum coverage,
minSupport denoting the minimum support,
minConfidence denoting the minimum confidence,
and minLift = max(1.0, β(RS, maxAssocs)),
where RS is the set of associations {R :
coverage(R) > minCoverage ∧ support(R) >
minSupport ∧ confidence(R) > minConfidence},
and β(Z, n) is the lift of the nth asso-
ciation in Z sorted from highest to low-
est by lift. An association rule X →
Y [coverage, support, confidence, lift] is a target iff
it satisfies |X| 6 maxLHSsize,coverage(X →
Y) > minCoverage, support(X → Y) >
minSuport, confidence(X → Y) >
minConfidence, and lift(X → Y) > minLift.

Definition 2. Suppose ARO = (C,D,A,M). For
any association rule X → Y ∈ A, it is trivial
iff there exists an association rule X1 → Y ∈ A
satisfying X1 ⊂ X and coverage(X1 → Y) =
coverage(X → Y).

Definition 3. For any ARO = (C,D,A,M), it is
a nontrivial association rule discovery task based on
OPUS AR, denoted by ARO∗, iff that every associ-
ation rule is not trivial is added to the constraints
M.

We give two properties about ARO in the following.
Obviously all the properties ARO has also apply to
ARO∗.

Theorem 1. Suppose ARO = (C,D,A,M). For
any S1 ⊆ C, S2 ⊆ C, and S1 ⊆ S2, cs(S2) ⊆ cs(S1)
holds. This is to say, cover(S2) 6 cover(S1) holds.

Proof. For any d ∈ cs(S2), according to Definition
1, S2 ⊆ d holds. Since S1 ⊆ S2, S1 ⊆ d holds. Hence
d ∈ cs(S1). So cs(S2) ⊆ cs(S1) holds.

Theorem 2. Suppose ARO = (C,D,A,M). For
any association rules S1 → S3 and S1 ∪ S2 → S3, if

coverage(S1 → S3) = coverage(S1 ∪ S2 → S3) (1)

the following hold.

support(S1 → S3) = support(S1 ∪ S2 → S3) (2)

confidence(S1 → S3) = confidence(S1 ∪ S2 → S3)
(3)

lift(S1 → S3) = lift(S1 ∪ S2 → S3) (4)

Proof. Since (3) and (4) hold if (2) hold, so we only
need to prove (2), which is as follows.

cover(S1 ∪ S3) = cover(S1 ∪ S2 ∪ S3) (5)

From (1), i.e., cover(S1) = cover(S1 ∪ S2), and Def-
inition 1, we have

|cs(S1)| = |cs(S1 ∪ S2)| (6)

From Theorem 1,

cs(S1) ⊇ cs(S1 ∪ S2) (7)

From (6) and (7), we get

cs(S1) = cs(S1 ∪ S2) (8)

For any d ∈ D ∧ S1 ∪ S3 ⊆ d, S1 ⊆ d and S3 ⊆ d
hold. From S1 ⊆ d and (8), we get S1 ∪ S2 ⊆ d.
From S3 ⊆ d, S1 ∪ S2 ∪ S3 ⊆ d holds. Hence

cs(S1 ∪ S3) ⊆ cs(S1 ∪ S2 ∪ S3) (9)

From Theorem 1, we have

cs(S1 ∪ S2 ∪ S3) ⊆ cs(S1 ∪ S3) (10)

From (9) and (10), cs(S1 ∪ S3) = cs(S1 ∪ S2 ∪ S3)
holds. Hence (5) is proved.

From Theorem 2 it follows that if one association is
trivial with respect to another association, these two
associations share not only the same coverage, but
also the same support, confidence and lift.

4.2 Pruning the condition added to
antecedent

This pruning rule at Step 2.1 prunes the condi-
tion in AvailableLHS before it is added to the
CurrentLHS. It is based on the following theorem.

Theorem 3. Suppose ARO∗ = (C,D,A,M). For
any association rule X → Y , if |X| ≥ 2 and there
exists P ∈ X satisfying cover({P}) = 1, X → Y is
not a target.

Proof. Let X = X1 ∪ {P} where X1 ⊂ C. Since
cover({P}) = 1, |cs({P})| = |D|. From cs({P}) ⊆
D, we get

cs({P}) = D (11)

From Theorem 1,

cs(X) = cs(X1 ∪ {P}) ⊆ cs(X1) (12)

For any d ∈ D ∧ X1 ⊆ d, from (12), P ⊆ d holds.
Therefore X1 ∪ {P} ⊆ d holds. This means the fol-
lowing is proved.

cs(X1) ⊆ cs(X) = cs(X1 ∪ {P}) (13)

From (13) and (14), we get

cs(X1) = cs(X) = cs(X1 ∪ {P}) (14)

So cover(X1) = cover(X1 ∪ {P}), i.e.,
coverage(X → Y) = coverage(X1 → Y). Ac-
cording to Definition 2, X → Y is trivial due to
the fact that X1 → Y exists. X → Y is not a
target.

From this theorem, we get the following pruning
rule.

Pruning 1. In OPUS AR for ARO∗ =
(C,D,A,M), for any condition P ∈ AvailableLHS,
if CurrentLHS 6= ∅ and cover({P}) = 1, P can be
pruned from NewAvailableLHS.

According to the theorem above, any association
rule containing CurrentLHS ∪ {P} in the an-
tecedent is trivial, so P can be pruned from
NewAvailableLHS.

4.3 Saving data access for the as-
sociations with NewLHS as an-
tecedents

The saving rule at Step 2.1.3(b) for all the
associations with NewLHS as antecedents,
where NewLHS = CurrentLHS ∪ {P},
P ∈ AvailableLHS, functions according to
the relation between CurrentLHS and P .

Saving 1. In OPUS AR for ARO∗ = (C,D,A,M),
for NewLHS = CurrentLHS ∪ {P} where
P ∈ AvailableLHS, if cover(CurrentLHS) =
cover(NewLHS), there is no need to access data to
evaluate all the associations with NewLHS as an-
tecedents, as they are not targets.

All the associations with NewLHS as antecedents
are trivial since for each NewLHS → Q where
Q ∈ AvailableRHS, there exists CurrentLHS →
Q sharing the same coverage value and is eval-
uated before NewLHS in OPUS AR. This sav-
ing rule saves the data access for evaluating all
the associations with NewLHS = CurrentLHS ∪
{P} as antecedents, however P can not be pruned
from NewAvailableLHS since there may exist
nontrivial associations having less coverage than
cover(CurrentLHS) by containing other conditions
except NewLHS in the antecedents.

5 Experiments

In order to evaluate the efficiency of OPUS AR, ex-
periments are performed on ten large datasets from
the UCI ML and KDD repositories [4, 2]. These
datasets are listed in Table 2.

We compare the performance with the publicly avail-
able apriori system developed by Borgelt [5]. In
all the experiments OPUS AR seeks the top 1000
associations on lift within the constraints of min-
imum confidence set to 0.8, minimum support set
to 0.01, and the maximum number of conditions in
antecedent of an association set to 4. The same min-
imum support, minimum confidence, and maximum
antecedent size are used for Apriori, thus the max-
imum itemset size is 5 for Apriori because itemsets
are required that contain up to 4 antecedent condi-
tions as well as the single consequent condition. The
experiments were performed on a Linux server with
2 CPUs each 933MHz in speed, 1.5G RAM, and 4G
virtual memory.

Table 2: Datasets for experiments

name records attributes values
covtype 581012 55 125
ipums.la.99 88443 61 1883
ticdata2000 5822 86 709
connect-4 67557 43 129
letter recognit. 20000 17 74
pendigits 10992 17 58
shuttle 58000 10 34
splice junction 3177 61 243
mush 8124 23 127
soybean-large 307 36 119

The “trivial associations allowed” column of Table 3
lists the CPU times and data access numbers on the
datasets for OPUS AR searching for associations no
matter they are trivial or not, and “trivial associ-
ations filtering out” column shows the efficiency of
OPUS AR searching for nontrivial association rules.
The column “no of trivial associations filtered out”
lists the number of trivial associations that appear
in the top 1000 associations found when trivial asso-
ciations are allowed (and hence which do not appear
in the 1000 associations discovered when trivial as-
sociations are not allowed). This is the number of
spurious and uninteresting associations that the user
is saved from considering when this new approach
to association rule discovery is employed. For half
the datasets, more than three quarters of the 1000
best associations returned by conventional associa-
tion rule discovery are trivial.

The CPU times of running Borgelt’s Apriori system
on the ten datasets are listed in the “Apriori” col-
umn of Table 3. We can see clearly that on ev-
ery dataset OPUS AR is more efficient than Apri-
ori both for keeping and removing trivial associa-
tions. The infeasibility of Apriori for dense datasets
is also demonstrated by that for “ticdata2000,” Apri-
ori runs out of memory when processing itemsets of
size 4.

6 Conclusions

OPUS AR provides an alternative to the frequent
itemset approach to association rule discovery. Our
experiments have demonstrated that OPUS AR can
utilize constraints on relationships between associa-

T
ab

le
3:

E
ffi

ci
en

cy
an

d
da

ta
ac

ce
ss

nu
m

be
rs

of
O

P
U

S
A

R
fil

te
ri

ng
no

ne
an

d
fil

te
ri

ng
tr

iv
ia

la
ss

oc
ia

ti
on

s
an

d
effi

ci
en

cy
of

A
pr

io
ri

O
P

U
S

A
R

d
at

as
et

s
tr

iv
ia

l
as

so
ci

at
io

n
s

al
lo

w
ed

tr
iv

ia
l
as

so
ci

at
io

n
s

fi
lt

er
ed

ou
t

A
p
ri

or
i

C
P

U
ti

m
e

n
o

of
d
at

a
C

P
U

ti
m

e
n
o

of
d
at

a
n
o

of
tr

iv
ia

l
ac

ce
ss

es
ac

ce
ss

es
as

so
ci

at
io

n
s

fi
lt

er
ed

ou
t

co
vt

yp
e

0:
26

:4
1

5,
50

2,
24

1
0:

23
:5

4
4,

35
6,

82
7

71
9

77
:5

6:
3

ip
um

s.
la

.9
9

0:
9:

7
16

,8
12

,3
42

0:
7:

46
14

,6
83

,3
71

93
7

19
:4

5:
5

ti
cd

at
a2

00
0

0:
9:

53
11

8,
30

9,
62

0
0:

7:
11

99
,4

19
,4

06
69

8
N

ot
en

ou
gh

m
em

or
y

co
nn

ec
t-

4
0:

3:
18

8,
19

7,
93

4
0:

2:
26

6,
39

0,
09

6
85

2
3:

15
:2

6
le

tt
er

-r
ec

og
ni

ti
on

0:
0:

6
1,

58
9,

63
1

0:
0:

6
1,

58
4,

17
1

46
0:

0:
35

pe
nd

ig
it

s
0:

0:
3

1,
06

9,
51

9
0:

0:
3

1,
06

9,
55

7
29

0:
0:

23
sh

ut
tl

e
0:

0:
2

10
0,

96
3

0:
0:

2
10

3,
99

1
16

9
0:

0:
7

sp
lic

e
ju

nc
ti

on
0:

6:
4

71
9,

88
4,

79
2

0:
6:

3
71

9,
43

3,
78

0
0

0:
12

:5
0

m
us

h
0:

0:
1

47
0,

29
3

0:
0:

2
68

6,
30

6
77

5
0:

1:
45

so
yb

ea
n-

la
rg

e
0:

0:
1

78
7,

47
7

0:
0:

1
1,

05
8,

28
6

76
7

0:
3:

30

tion rules to prune the search space. Pruning trivial
associations in this manner both removes large num-
bers of uninteresting associations from the list of as-
sociations delivered to the user and provides modest
improvements in compute time.

References

[1] R. Agrawal, T. Imielinski, & A. Swami. Min-
ing associations between sets of items in mas-
sive databases. In Proc. ACM-SIGMOD-93, pp.
207–216, 1993.

[2] S. D. Bay. The UCI KDD archive. Irvine, CA:
University of California, Department of Infor-
mation and Computer Science, 2001.

[3] R. J. Bayardo. Efficiently mining long patterns
from databases. In Proc. ACM-SIGMOD-98,
pp. 85–93, 1998.

[4] C. Blake & C. J. Merz. UCI repository of ma-
chine learning databases. University of Califor-
nia, Department of Information and Computer
Science, Irvine, CA., 2001.

[5] C. Borgelt. apriori. (Computer Software)
http://fuzzy.cs.Uni-Magdeburg.de/ borgelt/,
February 2000.

[6] G. I. Webb. OPUS: An efficient admissible algo-
rithm for unordered search. Journal of Artificial
Intelligence Research, 3:431–465, 1995.

[7] G. I. Webb. Efficient search for association
rules. In KDD-2000, pp. 99–107, Boston, MA,
2000.

