
Further Pruning
for Efficient Association Rule Discovery

Songmao Zhang and Geoffrey I. Webb

School of Computing and Mathematics, Deakin University
Geelong, Victoria 3217, Australia

Abstract. The Apriori algorithm’s frequent itemset approach has become
the standard approach to discovering association rules. However, the com-
putation requirements of the frequent itemset approach are infeasible for
dense data and the approach is unable to discover infrequent associations.
OPUS AR is an efficient algorithm for association rule discovery that
does not utilize frequent itemsets and hence avoids these problems. It can
reduce search time by using additional constraints on the search space
as well as constraints on itemset frequency. However, the effectiveness
of the pruning rules used during search will determine the efficiency of
its search. This paper presents and analyses pruning rules for use with
OPUS AR. We demonstrate that application of OPUS AR is feasible for a
number of datasets for which application of the frequent itemset approach
is infeasible and that the new pruning rules can reduce compute time by
more than 40%.

Keywords: machine learning, search.

1 Introduction

Association rule discovery has been dominated by the frequent itemset strategy
as exemplified by the Apriori algorithm [2]. OPUS AR utilizes an alternative as-
sociation rule discovery strategy to find associations without first finding frequent
itemsets [16]. This avoids the need to retain the set of frequent itemsets in mem-
ory, a requirement that makes the frequent itemset strategy infeasible for dense
data [4]. This paper presents and evaluates pruning rules and other strategies that
improve the computational efficiency of OPUS AR.

We characterize the association rule discovery task as follows.
– A dataset is a finite set of records where each record is an element to which

we apply Boolean predicates called conditions.
– An itemset is a set of conditions. The name itemset derives from association

rule discovery’s origins in market basket analysis where each condition denotes
the presence of an item in a market basket.

– coverset(I) denotes the set of records from a dataset that satisfy itemset I.
– An association rule consists of two conjunctions of conditions called the an-

tecedent and consequent and associated statistics describing the frequency with
which the two co-occur within the dataset. An association rule with antecedent
A, consequent C, and statistics S is denoted as A → C[S].

The task involves finding all association rules that satisfy a set of user defined
constraints with respect to a given dataset.

M. Brooks, D. Corbett, and M. Stumptner (Eds.): AI 2001, LNAI 2256, pp. 605–618, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



606 S. Zhang and G.I. Webb

The frequent itemset strategy has become the standard approach to association
rule discovery. This strategy first discovers all frequent itemsets. A frequent itemset
is an itemset whose support exceeds a user defined threshold. The association rules
are then generated from the frequent itemsets. If there are relatively few frequent
itemsets this approach can be very efficient. However, it is subject to a number of
limitations.

1. The user is required to nominate a minimum frequency. Associations with sup-
port lower than this frequency will not be discovered. For some applications
there may not be any natural lower bound on support and hence pruning the
search space on minimum frequency in this manner may not be appropriate.
Also, for some applications infrequent itemsets may actually be especially in-
teresting. For example, especially high value transactions are likely to be both
relatively infrequent and of high interest. This is known as the vodka and caviar
problem.

2. Even when a minimum frequency is applicable, there may be too many frequent
itemsets for computation to be feasible. The frequent itemset approach requires
that all frequent itemsets be maintained in memory. This imposes unrealistic
memory requirements for many applications [4].

3. It is difficult to utilize search constraints other than minimum frequency to im-
prove the efficiency of the frequent itemset approach. Where other constraints
can be specified, potential efficiencies are lost.

Most research in association rule discovery has sought to improve the efficiency
of the frequent itemset discovery process [1,9, for example]. This has not addressed
any of the above problems, except the closed itemset approaches [11,17], which
reduce the number of itemsets required, addressing point 2, but not 1 or 3.

OPUS AR provides an alternative approach to association rule discovery based
on the efficient OPUS search algorithm [15]. This extends previous work in rule dis-
covery search [5,8,10,12,13,14,15] by searching for rules that optimize an objective
function over a space of rules that allows alternative variables in the consequent.
Previous algorithms have all been restricted to a single target consequent variable
per search.

OPUS AR does not have significant memory requirements other than the re-
quirement that all data be retained in memory. While it does not achieve the
same degree of pruning as Apriori from a constraint on minimum frequency, it can
utilize other constraints more effectively than Apriori. In particular, it can utilize
constraints on the number of associations to be discovered, returning the n asso-
ciations that optimize some criterion of interestingness. This provides a desirable
contrast to the frequent itemset approach that is prone to generate extraordinarily
large numbers of associations. In practice, only a small number associations are
likely to be utilized by a user. A large number of associations is more likely to be
a hindrance than an asset.

Search space pruning rules are critical to the efficiency of OPUS AR. Webb [16]
utilized four such pruning rules. This paper presents two new pruning rules and
additional mechanisms for reducing the computational requirements of OPUS AR.

This paper is organised as follows. Section 2 introduces the Apriori algorithm
and analyzes its advantages and disadvantages. Section 3 introduces the OPUS
search algorithm on which OPUS AR is based. Section 4 presents the OPUS AR



Further Pruning for Efficient Association Rule Discovery 607

algorithm for discovering association rules. Section 5 describes the new pruning
rules and other efficiency measures and presents experiments that demonstrate the
effectiveness of these measures when discovering association rules on several large
datasets. Section 6 presents conclusions.

2 The Apriori Algorithm

The Apriori algorithm discovers associations in a two-step process. First, it finds
the frequent itemsets {I ⊆ C : |coverset(I)|

|D| ≥ min support}, where C is the set of all
available conditions, D is the dataset, and min support is a user defined minimum
support constraint. In the second stage the frequent itemsets are used to generate

{}

{a}
{b} {a, b}
{c} {a, c}

{b, c} {a, b, c}

{d}
{a, d}
{b, d} {a, b, d}
{c, d} {a, c, d}

{b, c, d} {a, b, c, d}

Fig. 1. A fixed-structure search space

the association rules. The minimum support constraint on the frequent itemsets
guarantees that all associations generated will satisfy the minimum support con-
straint. Other constraints, such as minimum confidence are enforced during the
second stage.

The frequent itemset strategy can limit the number of rules that are explored,
and cache the support values of the frequent items so that there is no need to access
the dataset in the second step. It is very successful at reducing the number of passes
through the data. The frequent itemset approach has become the predominant
approach to association rule discovery.

However, the frequent itemset approach is only feasible for sparse data. For
dense datasets where there are numerous frequent itemsets, the overheads for main-
taining and manipulating the itemsets are too large to make the system efficient
and feasible [4]. This is also apparent in the experiments presented below. Dense
datasets are common in applications other than basket data analysis or when bas-
ket data is augmented by other customer information. Another problem of Apriori
is that it lists numerous association rules to the user and it may be very difficult
for the user to identify the interesting rules manually. Take the covtype dataset
for example. Covtype has 581,012 records containing 125 items. The number of
the association rules generated by Apriori with the minimum support set to 0.01,
minimum confidence 0.8, and maximum itemset size 5 is 88,327,710. Since the
Apriori algorithm generates itemsets by considering features of itemsets in isola-
tion, the inter-relationships between the itemsets are not taken into account. In
consequence, many association rules generated may not be of interest to the user.



608 S. Zhang and G.I. Webb

3 The OPUS Search Algorithm

OPUS [15] provides efficient search for subset selection, such as selecting a subset
of available conditions that optimizes a specified measure. It was developed for
classification rule discovery. Previous algorithms ordered the available conditions
and then conducted a systematic search over the ordering in such a manner as to
guarantee that each subset was investigated once only, as illustrated in Fig. 1.

Critical to the efficiency of such search is the ability to identify and prune
sections of the search space that cannot contain solutions. This is usually achieved
by identifying subsets that cannot appear in a solution. For example, it might be
determined that {b} cannot appear in a solution in the search space illustrated
in Fig. 1. Under previous search algorithms [8,10,12,13,14], subsets that appear
below such a subset were pruned, as illustrated in Fig. 2. In this example, pruning
removes one subset from the search space.

This contrasts with the pruning that would occur if all subsets containing the
pruned subset were removed from the search space, as illustrated in Fig. 3. This
optimal pruning almost halves the search space below the parent node.

{}

{a}
{b} ×
{c} {a, c}

{b, c} {a, b, c}

{d}
{a, d}
{b, d} {a, b, d}
{c, d} {a, c, d}

{b, c, d} {a, b, c, d}

Fig. 2. Pruning a branch from a fixed-structure search space

{}

{a}
{b} ×
{c} {a, c}

× ×

{d}
{a, d}

× ×
{c, d} {a, c, d}

× ×

Fig. 3. Pruning all nodes containing a single condition from a fixed-structure search space

OPUS achieves the pruning illustrated in Fig. 3 by maintaining a set of available
items at each node in the search space. When adding an item i to the current
subset s results in a subset s ∪ {i} that can be pruned from the search space, i
is simply removed from the set of available items at s which is propagated below
s. As supersets of s ∪ {i} below s can only be explored after s ∪ {i}, this simple
mechanism with negligible computational overheads guarantees that no superset
of a pruned subset will be generated in the search space below the parent of
the pruned node. This greatly expands the scope of a pruning operation from



Further Pruning for Efficient Association Rule Discovery 609

that achieved by previous algorithms which only extended to the space below the
pruned node. Further pruning can be achieved by reordering the search space, but
this proves to be infeasible in search for association rule discovery, as explained by
Webb [16].

4 The OPUS AR Algorithm

OPUS AR extends the OPUS search algorithm to association rule discovery [16].
To simplify the search problem, the consequent of an association rule is restricted
to a single condition. Association rules of this restricted form are of interest for
many data mining applications.

Whereas OPUS supports search through spaces of subsets, the as-
sociation rule search task requires search through the space of pairs
〈I ⊆ conditions, c ∈ conditions〉, where I is the antecedent and c the consequent
of an association. OPUS AR achieves this by performing OPUS search through
the space of antecedents, maintaining at each node a set of potential consequents,
each of which is explored at each node.

The algorithm relies upon there being a set of user defined constraints on the
acceptable associations. These are used to prune the search space. Such constraints
can take many forms, ranging from the traditional association rule discovery con-
straints on support and confidence to a constraint that only the n associations
that maximize some statistic be returned. To provide a general mechanism for
handling a wide variety of constraints, we denote associations that satisfy all con-
straints target associations. Note that it may not be apparent when an association
is encountered whether or not it is a target. For example, if we are seeking the 100
associations with the highest lift, we may not know the cutoff value for lift until
the search has been completed. Hence, while we may be able to determine in some
circumstances that an association is not a target, we may not be able to determine
that an association is a target until the search is completed. To accommodate this,
pruning is only invoked when it is determined that areas of the search space cannot
contain a target. All associations encountered are recorded unless the system can
determine that they are not targets. However, these associations may be subse-
quently discarded as progress through the search space reveals that they cannot
be targets. When seeking the n best associations with respect to some statistic, we
can determine that a new association is not a target if its value on that statistic
is lower than the value of the nth best recorded so far, as the value of the nth best
for the search space cannot be lower than the value of the nth best for the subset
of the search space examined so far.

Table 1 displays the algorithm that results from applying the OPUS search
algorithm [15] to obtain efficient search for this search task. The algorithm is
presented as a recursive procedure with three arguments:

CurrentLHS: the set of conditions in the antecedent of the rule currently being
considered.

AvailableLHS: the set of conditions that may be added to the antecedent of
rules to be explored below this point.

AvailableRHS: the set of conditions that may appear on the consequent of a
rule in the search space at this point and below.



610 S. Zhang and G.I. Webb

Table 1. The OPUS search algorithm adjusted for search for association rules

The initial call to the procedure sets CurrentLHS to {}, and AvailableLHS and
AvailableRHS to the set of conditions that are to be considered on the antecedent
and consequent of association rules, respectively.

The algorithm OPUS AR is a search procedure that starts with the associations
with one condition in the antecedent and searches through successive associations
formed by adding conditions to the antecedent. It loops through each condition in
AvailableLHS, adds it to CurrentLHS to form the NewLHS. For the NewLHS, it
loops through each condition in AvailableRHS to check if it could be the consequent
for NewLHS. After the AvailableRHS loop, the procedure is recursively called
with the arguments NewLHS, NewAvailableLHS and NewAvailableRHS. The two
latter arguments are formed by removing the pruned conditions from AvailabeLHS
and AvailableRHS, respectively. Step 2.1.3(b.1)ii.A.1 records the potential target
associations.

5 Pruning in Search for Association Rules

Webb [16] utilized four pruning rules to prune the search space explored by
OPUS AR. We present two new pruning rules and two data access saving rules for
improving the efficiency of OPUS AR. In order to evaluate their impact, experi-



Further Pruning for Efficient Association Rule Discovery 611

ments are performed on five large datasets from the UCI ML and KDD repositories
[6,3]. These datasets are listed in Table 2.

The four pruning rules presented in Webb [16] are taken as the basic pruning
rules in our experiments. Column “basic pruning” of Table 3 lists the times of run-
ning OPUS AR with these basic pruning rules on the five datasets. We test on the
same datasets the running times of OPUS AR with the basic pruning plus each of
the pruning mechanisms introduced below. We also compare the performance with
the publicly available apriori system developed by Borgelt [7]. In all the experi-
ments OPUS AR seeks the top 1000 associations on lift within the constraints of
minimum confidence set to 0.8, minimum support set to 0.01, and the maximum
number of conditions in antecedent of an association set to 4. The same minimum
support, minimum confidence, and maximum antecedent size are used for Apriori,
thus the maximum itemset size is 5 for Apriori because itemsets are required that
contain up to 4 antecedent conditions as well as the single consequent condition.
The experiments were performed on a Linux server with 2 CPUs each 933MHz in
speed, 1.5G RAM, and 4G virtual memory.

5.1 Formal Description of Association Rule Discovery Based on
OPUS AR

A formal description of association rule discovery based on OPUS AR is given in
the following.

Definition 1. An association rule discovery task based on OPUS AR (abbreviated
as AR by OPUS) is a 4-tuple (C,D,A,M), where
C: nonempty set of conditions;
D:nonempty set of records, called the dataset, where for each record d ∈ D, d ⊆ C.
For any S ⊆ C, let coverset(S) = {d|d ∈ D ∧ S ⊆ d}, and let cover(S) =
|coverset(S)|

|D| ;
A: set of association rules, where each association rule takes the form

X → Y [coverage, support, confidence, lift]

where X ⊂ C, X �= ∅, Y ⊂ C, |Y | = 1, X ∩ Y = ∅, and
coverage, support, confidence, and lift are statistics for the association rule,

Table 2. Datasets for experiments
name records attributes values
covtype 581012 55 125
ipums.la.99 88443 61 1883
ticdata2000 5822 86 709
connect-4 67557 43 129
letter-recognition 20000 17 74

satisfying coverage(X → Y ) = cover(X), support(X → Y ) = cover(X ∪ Y ),
confidence(X → Y ) = support(X→Y )

coverage(X→Y ) , and lift(X → Y ) = confidence(X→Y )
cover(Y ) ;

M: constraints, composed of maxAssocs denoting the maximum number of tar-
get association rules (which will consist of the association rules with the high-



612 S. Zhang and G.I. Webb

est values for lift of those that satisfy all other constraints), maxLHSsize de-
noting maximum number of conditions allowed in the antecedent of associa-
tion rule, minCoverage denoting the minimum coverage, minSupport denot-
ing the minimum support, minConfidence denoting the minimum confidence,
and minLift = max(1.0, β(RS,maxAssocs)), where RS is the set of asso-
ciations {R : coverage(R) � minCoverage ∧ support(R) � minSupport ∧
confidence(R) � minConfidence}, and β(Z, n) is the lift of the nth as-
sociation in Z sorted from highest to lowest by lift. An association rule
X → Y [coverage, support, confidence, lift] is a target iff it satisfies |X| �
maxLHSsize,coverage(X → Y ) � minCoverage, support(X → Y ) �
minSuport, confidence(X → Y ) � minConfidence, and lift(X → Y ) �
minLift.

Theorem 1. Suppose AR by OPUS = (C,D,A,M). For any S1 ⊆ C, S2 ⊆ C,
and S1 ⊆ S2, coverset(S2) ⊆ coverset(S1) holds. This is to say, cover(S2) �
cover(S1) holds.

Proof. For any d ∈ coverset(S2), according to Definition 1, S2 ⊆ d holds. Since
S1 ⊆ S2, S1 ⊆ d holds. Hence d ∈ coverset(S1). So coverset(S2) ⊆ coverset(S1)
holds. ��

Theorem 2. Suppose AR by OPUS = (C,D,A,M). For any nonempty
S1, S2, S3 ⊆ C satisfying S1 ∩ S2 = ∅, S2 ∩ S3 = ∅, and S1 ∩ S3 = ∅, if

cover(S1) = cover(S1 ∪ S2) (1)

the following holds.

cover(S1 ∪ S3) = cover(S1 ∪ S2 ∪ S3) (2)

Proof. From (1) and Definition 1, we have

|coverset(S1)| = |coverset(S1 ∪ S2)| (3)

From Theorem 1,

coverset(S1) ⊇ coverset(S1 ∪ S2) (4)

From (3) and (4), we get

coverset(S1) = coverset(S1 ∪ S2) (5)

For any d ∈ D ∧ S1 ∪ S3 ⊆ d, S1 ⊆ d and S3 ⊆ d hold. From S1 ⊆ d and (5), we
get S1 ∪ S2 ⊆ d. From S3 ⊆ d, S1 ∪ S2 ∪ S3 ⊆ d holds. Hence

coverset(S1 ∪ S3) ⊆ coverset(S1 ∪ S2 ∪ S3) (6)

From Theorem 1, we have

coverset(S1 ∪ S2 ∪ S3) ⊆ coverset(S1 ∪ S3) (7)

From (6) and (7), coverset(S1 ∪ S3) = coverset(S1 ∪ S2 ∪ S3) holds. Hence (2) is
proved. ��



Further Pruning for Efficient Association Rule Discovery 613

5.2 Pruning the Consequent Condition Before the Evaluation of
Association Rule

One of the pruning rules at Step 2.1.3(b.1)i is used to prune the consequent con-
dition according to the current lower bound on minSupport before the evaluation
of the association rule. This pruning rule is based on the following theorem.

Theorem 3. Suppose AR by OPUS = (C,D,A,M). For any association rule
X → Y , if cover(Y ) < minSupport, X → Y is not a target.

Proof. According to Definition 1 and Theorem 1, we get

support(X → Y ) = cover(X ∪ Y ) � cover(Y ) < minSupport

Hence X → Y is not a target. ��
From this theorem, we get the following pruning rule.

Pruning 1 In OPUS AR for AR by OPUS = (C,D,A,M), for any condition
Q ∈ AvailableRHS, if cover(Q) < minSupport, then Q can be pruned from
NewAvailableRHS.

According to Theorem 3, any association rule with such Q as the consequent
can not be a target, therefore Q can be pruned. The “pruning 1 added” column of
Table 3 lists the times for OPUS AR on the five datasets with the basic pruning
and pruning 1.

5.3 Pruning the Consequent Condition after the Evaluation of
Association Rule

This pruning rule at Step 2.1.3(b.1)ii.B is used to prune the consequent condition
after the evaluation of the current association rule. It is based on the following
theorem.

Theorem 4. Suppose AR by OPUS = (C,D,A,M). For any association rule
X → Y , if confidence(X → Y ) = 1, for any X1 ⊂ C satisfying X1 ∩ X =
∅ ∧X1 ∩ Y = ∅ ∧ cover(X ∪X1) �= 0, the following holds.

lift(X ∪X1 → Y ) = lift(X → Y )

Proof. From confidence(X → Y ) = 1, we get

support(X → Y ) = coverage(X → Y )

that is to say,

cover(X) = cover(X ∪ Y ) (8)

From (8) and Theorem 2, cover(X ∪ X1) = cover(X ∪ X1 ∪ Y ) holds. Since
cover(X ∪X1) �= 0, hence

support(X ∪X1 → Y ) = coverage(X ∪X1 → Y ) �= 0



614 S. Zhang and G.I. Webb

Therefore confidence(X ∪ X1 → Y ) = 1. From Definition 1, the following two
equations hold.

lift(X ∪X1 → Y ) =
confidence(X ∪X1 → Y )

cover(Y )
=

1
cover(Y )

lift(X → Y ) =
confidence(X → Y )

cover(Y )
=

1
cover(Y )

Hence lift(X ∪X1 → Y ) = lift(X → Y ) holds. ��
From this theorem, we get the following pruning rule.

Pruning 2 In OPUS AR for AR by OPUS = (C,D,A,M), after the evaluation
of the current association rule NewLHS → Q, if confidence(NewLHS → Q) = 1
and lift(NewLHS → Q) < minLift, Q can be pruned from NewAvailableRHS.

According to the above theorem, all of the association rules with Q as the
consequent in the search space below the current node take the same lift value
as NewLHS → Q. Therefore if lift(NewLHS → Q) < minLift, none of these
rules can be target association, Q can be pruned from NewAvailableRHS. The
“pruning 2 added” column of Table 3 lists the times for OPUS AR on the five
datasets with the basic pruning and pruning 2. For “covtype,” the compute time
is reduced by this pruning to less than 55% of that supported by the basic pruning
rules, for “ipums.la.99,” the compute time is reduced to less than 66% of the basic
pruning.

5.4 Saving Data Access for the Current Association Rule by
minConfidence

In order to evaluate the number of records covered by set of conditions, the dataset
is normally accessed by OPUS AR at least once for each association rule antecedent
and once for the union of the antecedent and consequent. Techniques for saving
such data access can improve the efficiency of the algorithm. Whereas the pruning
rules save data access by discarding the region of the search space below a node,
the saving rules save data access for a node without removing its branch.

Step 2.1.3(b.1)ii is for saving data access for the current association rule
NewLHS → Q. We are going to introduce two of the saving rules adopted at
this step, one is by minConfidence, based on the following theorem, and the
other is by the antecedent of the current association rule, described in the next
section.

Theorem 5. Suppose AR by OPUS = (C,D,A,M). For any association rule
X → Y , if cover(Y )

cover(X) < minConfidence, X → Y is not a target.

Proof. According to Definition 1, we have

confidence(X → Y ) =
support(X → Y )
coverage(X → Y )

=
cover(X ∪ Y )
cover(X)

According to Theorem 1, cover(X ∪ Y ) � cover(Y ) holds. Since cover(Y )
cover(X) <

minConfidence,



Further Pruning for Efficient Association Rule Discovery 615

confidence(X → Y ) � cover(Y )
cover(X)

< minConfidence

Therefore X → Y is not a target. ��
From this theorem, we get the following data access saving rule.

Saving 1 In OPUS AR for AR by OPUS = (C,D,A,M), for the current as-
sociation NewLHS → Q, if |NewLHS| = maxLHSsize and cover(Q)

cover(NewLHS) <

minConfidence, there is no need to access data to evaluate NewLHS → Q, as it
is not a target.

The reason that the saving is adopted instead of pruning under this situation is
in the branch below the currentNewLHS → Q, some of the supersets ofNewLHS
with lower values of coverage might make the association have confidence larger
than minConfidence. While saving data access, the pruning based on the results
of the data access is not available anymore, thus the overall efficiency might be
slowed down accordingly. Due to this, |NewLHS| = maxLHSsize is added to the
above saving rule to ensure that it is applied only at the maximum search depth
where no pruning is necessary.

The “saving 1 added” column of Table 3 lists the times for OPUS AR on the
five datasets with the basic pruning and this saving rule.

5.5 Saving Data Access for the Current Association Rule by the
Antecedent

Another saving rule at Step 2.1.3(b.1)ii for the current associations rule
NewLHS → Q, where NewLHS = CurrentLHS ∪ {P}, P ∈ AvailableLHS,
functions according to the relation between CurrentLHS and P . It is based on
the following theorem.

Theorem 6. Suppose AR by OPUS = (C,D,A,M). For any association rule
X → Y and X ∪ {P} → Y where P ∈ C, P �∈ X and P �∈ Y , if cover(X) =
cover(X ∪ {P}), the following hold.

coverage(X → Y ) = coverage(X ∪ {P} → Y ) (9)

support(X → Y ) = support(X ∪ {P} → Y ) (10)

confidence(X → Y ) = confidence(X ∪ {P} → Y ) (11)

lift(X → Y ) = lift(X ∪ {P} → Y ) (12)

Proof. According to cover(X) = cover(X ∪ {P}), (9) holds. From cover(X) =
cover(X ∪ {P}) and Theorem 2, the following holds.

cover(X ∪ Y ) = cover(X ∪ {P} ∪ Y ) (13)

From (13), (10) holds. Hence (11) and (12) are proved. ��
From this theorem, we get the following data access saving rule.



616 S. Zhang and G.I. Webb

Saving 2 In OPUS AR for AR by OPUS = (C,D,A,M), for the current as-
sociation NewLHS → Q where NewLHS = CurrentLHS ∪ {P}, P ∈
AvailableLHS, if |NewLHS| = maxLHSsize, the number of current tar-
get associations is less than |coverset(NewLHS)|, and cover(CurrentLHS) =
cover(NewLHS), instead of accessing data to evaluate NewLHS → Q, check
if CurrentLHS → Q exists in the current target associations, and if yes, copy
all the statistic values of CurrentLHS → Q to NewLHS → Q, otherwise,
NewLHS → Q is not a target.

Since CurrentLHS → Q is investigated before NewLHS → Q in OPUS AR,
and they share the same statistic values, NewLHS → Q will be a target if and
only if CurrentLHS → Q is a target. Due to the same reasons as in the above
section, we add |NewLHS| = maxLHSsize in the saving rule to make sure that
application of the saving rule can not slow down the overall efficiency. If the num-
ber of current target associations is larger than |coverset(NewLHS)|, searching
current target associations might become less efficient than accessing data of the
amount of |coverset(NewLHS)| for computing cover(NewLHS ∪Q).

The “saving 2 added” column of Table 3 lists the times for OPUS AR on the
five datasets with the basic pruning and this saving rule. For both “covtype” and
“connect-4,” the compute times are reduced by this saving to less than 66% of
that supported by the basic pruning rules.

Table 3. Efficiency improvements by pruning in OPUS AR and efficiency of Apriori

OPUS AR
datasets basic pruning pruning saving saving all Apriori

pruning 1 added 2 added 1 added 2 added added
covtype 7:33:50 5:28:21 4:6:58 6:25:16 4:59:19 3:4:19 77:56:3
ipums.la.99 11:38:31 9:2:37 7:40:12 11:27:9 9:25:16 6:28:38 19:45:5
ticdata2000 25:28:43 24:34:12 23:41:12 24:56:10 22:34:7 23:18:29 —
connect-4 1:48:51 1:24:59 1:10:9 1:30:35 1:11:37 0:48:33 3:15:26
letter-recognition 0:0:23 0:0:20 0:0:20 0:0:23 0:0:22 0:0:20 0:0:35

5.6 Efficiency Comparison between OPUS AR and Apriori

The “all added” column of Table 3 lists the times on the datasets for OPUS AR
with the new pruning mechanisms composed of pruning 1 and 2 and saving rule
1 and 2 all added to the four original pruning rules. For all datasets other than
“ticdata2000,” combining all rules results in more efficient search than utilizing
any of the rule alone. The interaction between rules than increases compute times
for “ticdata2000” merits further investigation. For “covtype,” “connect-4,” and
“ipums.la.99,” the compute times are reduced to less than 41%, 45% and 56% of
that supported by the original pruning rules, respectively.

The CPU times of running Borgelt’s Apriori system on the five datasets are
listed in the “Apriori” column of Table 3. The inefficiency of Apriori for dense
datasets is demonstrated by the fact that on every dataset OPUS AR is more
efficient than Apriori, and that for “ticdata2000,” Apriori runs out of memory
when processing itemsets of size 4.



Further Pruning for Efficient Association Rule Discovery 617

6 Conclusions

OPUS AR provides an alternative to the frequent itemset approach to association
rule discovery. Our experiments have demonstrated that OPUS AR can provide
more efficient association rule discovery than apriori for dense datasets, and can
make association rule discovery feasible where the memory requirements of the
frequent itemset approach can make its application infeasible. OPUS AR has the
further advantage that it can utilize constraints other than minimum frequency to
prune the search space. This makes feasible association rule discovery where there
is no natural lower limit on the support for an association.

This paper has presented new pruning rules and data access saving rules for
OPUS AR, which result in the reduction of compute times by as much as 41%
compared with those resulting from the original mechanisms only. These results
again demonstrate that OPUS AR can support fast association rule discovery from
large dense datasets.

References

1. R. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. Depth first generation of long
patterns. In Proc. Sixth ACM SIGKDD Int. Conf. Knowledge Discovery and Data
Mining (KDD2000), pages 108–118, Boston, MA, August 2000. ACM.

2. R. Agrawal, T. Imielinski, and A. Swami. Mining associations between sets of items
in massive databases. In Proc. 1993 ACM-SIGMOD Int. Conf. Management of Data,
pages 207–216, 1993.

3. S. D. Bay. The UCI KDD archive. [http://kdd.ics.uci.edu] Irvine, CA: University of
California, Department of Information and Computer Science., 2001.

4. R. J. Bayardo. Efficiently mining long patterns from databases. In Proc. 1998 ACM-
SIGMOD Int. Conf. Management of Data, pages 85–93, 1998.

5. R. J. Bayardo, R. Agrawal, and D. Gunopulos. Constraint-based rule mining in large,
dense databases. Data Mining and Knowledge Discovery, 4(2/3):217–240, 2000.

6. C. Blake and C. J. Merz. UCI repository of machine learning databases. [Machine-
readable data repository]. University of California, Department of Information and
Computer Science, Irvine, CA., 2001.

7. C. Borgelt. apriori. (Computer Software)
http://fuzzy.cs.Uni-Magdeburg.de/ borgelt/, February 2000.

8. S. H. Clearwater and F. J. Provost. RL4: A tool for knowledge-based induction.
In Proc. Second Intl. IEEE Conf. on Tools for AI, pages 24–30, Los Alamitos, CA,
1990. IEEE Computer Society Press.

9. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
In Proc. 2000 ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD’00),
Dallas, TX, May 2000.

10. S. Morishita and A. Nakaya. Parallel branch-and-bound graph search for correlated
association rules. In Proc. ACM SIGKDD Workshop on Large-Scale Parallel KDD
Systems, volume LNAI 1759, pages 127–144. Springer, Berlin, 2000.

11. J. Pei, J. Han, and R. Mao. CLOSET: An efficient algorithm for mining frequent
closed itemsets. In Proc. 2000 ACM-SIGMOD Int. Workshop on Data Mining and
Knowledge Discovery (DMKD’00), Dallas, TX, May 2000.

12. F. Provost, J. Aronis, and B. Buchanan. Rule-space search for knowledge-based
discovery. CIIO Working Paper IS 99-012, Stern School of Business, New York
University, New York, NY 10012, 1999.



618 S. Zhang and G.I. Webb

13. R. Rymon. Search through systematic set enumeration. In Proc. KR-92, pages
268–275, Cambridge, MA, 1992.

14. R. Segal and O. Etzioni. Learning decision lists using homogeneous rules. In AAAI-
94, Seattle, WA, 1994. AAAI press.

15. G. I. Webb. OPUS: An efficient admissible algorithm for unordered search. Journal
of Artificial Intelligence Research, 3:431–465, 1995.

16. G. I. Webb. Efficient search for association rules. In The Sixth ACM SIGKDD
Int. Conf .Knowledge Discovery and Data Mining, pages 99–107, Boston, MA, 2000.
The Association for Computing Machinery.

17. M. J. Zaki. Generating non-redundant association rules. In Proceedingsof the Sixth
ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining (KDD2000), pages
34–43, Boston, MA, August 2000. ACM.


	Introduction
	The Apriori Algorithm
	The OPUS Search Algorithm
	The OPUS_AR Algorithm
	Pruning in Search for Association Rules
	Formal Description of Association Rule Discovery Based on OPUS_AR
	Pruning the Consequent Condition Before the Evaluation of Association Rule
	Pruning the Consequent Condition after the Evaluation of Association Rule
	Saving Data Access for the Current Association Rule by $minConfidence$
	Saving Data Access for the Current Association Rule by the Antecedent
	Efficiency Comparison between OPUS_AR and Apriori

	Conclusions

