
Proc. Sixteenth Int. Joint Conf. on Artificial Intelligence, Morgan Kaufmann, San Francisco, CA, pp. 702-707.

Decision Tree Grafting From the All-Tests-But-One Partition

Geoffrey I. Webb
School of Computing and Mathematics,

Deakin University,
Geelong, Vic. 3217

Australia

Abstract

Decision tree grafting adds nodes to an existing
decision tree with the objective of reducing pre-
diction error. A new grafting algorithm is pre-
sented that considers one set of training data
only for each leaf of the initial decision tree,
the set of cases that fail at most one test on the
path to the leaf. This new technique is demon-
strated to retain the error reduction power of
the original grafting algorithm while dramati-
cally reducing compute time and the complex-
ity of the inferred tree. Bias/variance analyses
reveal that the original grafting technique oper-
ated primarily by variance reduction while the
new technique reduces both bias and variance.

1 Introduction
Decision committee techniques, notably AdaBoost [Fre-
und & Schapire, 1996] and bagging [Breiman, 1996] have
demonstrated spectacular success at reducing decision
tree error across a wide variety of learning tasks [Quin-
lan, 1996; Bauer & Kohavi, in press]. These techniques
apply a base learning algorithm multiple times to form a
committee of classifiers. All committee members vote to
classify an unseen case. The success of these approaches
has demonstrated that there is room to improve upon
the average case prediction performance of standard de-
cision tree learning algorithms. However, decision com-
mittees deliver this improvement at a cost. Whereas
a single decision tree provides a model that is straight
forward to interpret, comprehension of a decision com-
mittee requires juxtaposition of all constituent models.
This is infeasible in non-trivial cases. While it is possi-
ble to construct a single decision tree that expresses the
model inherent in a decision committee, for even small
committees there is an exponential increase in the size of
the derived single tree model relative to the unmodified
model of the base learning algorithm [Quinlan, 1998].
For any but the most simple of domains, this will reduce
ease of comprehension critically.

Decision tree grafting has been presented as a tech-
nique that obtains some of the benefit of a decision com-
mittee while creating only a single tree [Webb, 1997].

Grafting is applied as a postprocess to an inferred de-
cision tree. It identifies regions of the instance space
that are not occupied by training examples, or occupied
only by misclassified training examples, and considers
alternative classifications for those regions. Support for
those classifications is obtained by considering alterna-
tive branches that could have been selected at ancestor
nodes to the leaf containing the region in question. If
those alternative branches indicate stronger support for
an alternative classification than that assigned to the
region by the current tree, a new branch is grafted to
the tree that imposes the new classification on the re-
gion. While the increase in tree complexity of this tech-
nique is much lower than that of forming a single tree
from a committee, the average increase in accuracy is
also lower. Also, initial techniques were limited in ap-
plication to continuous valued attributes. This paper
presents extensions to decision tree grafting that extend
grafting to discrete valued attributes; dramatically re-
duce induction time; reduce the complexity of inferred
trees; and increase average prediction accuracy. It also
provides a bias/variance analysis of grafting’s error re-
duction, demonstrating that the original algorithm re-
duced error primarily through variance reduction while
the new algorithm reduces both bias and variance.

2 Previous Grafting Algorithms
The first decision tree grafting algorithm, C4.5X, was
developed to investigate the utility of Occam’s razor
[Webb, 1996]. It was not initially conceived as a prac-
tical learning technique. The success of the technique
at reducing prediction error led to further development
aimed at creating a practical learning algorithm. This
led to C4.5+, a postprocessor for C4.5 Release 8, that
demonstrated frequent, if modest, reductions in predic-
tion error from that of the unmodified C4.5 over a wide
cross-selection of learning tasks [Webb, 1997].

Appendix A presents C4.5++, the C4.5+ grafting algo-
rithm extended in a straight-forward manner to handle
discrete valued attributes. This algorithm investigates
in turn each leaf of an existing tree. For each leaf, l, and
attribute a, it climbs the tree investigating at ancestor
nodes for l alternative cuts on a that would project across
the region of the instance space encompassed by l. It as-

sesses for each such alternative cut the evidence that it
would have presented about the class of objects that fall
within its projection across l, if selected instead of the
cut actually imposed at the ancestor. If that evidence
provides stronger support for an alternative classification
to the support for the original classification at the leaf,
the new cut is saved for possible imposition. When all
such cuts have been identified at ancestors of l, they are
ordered and imposed on l from best supported to least.
Support for a classification from a leaf or cut is obtained
by applying the Laplace accuracy estimate

Laplace(X, c) =
pos(X, c) + 1
|X|+ 2

(1)

where pos(X, c) is the number of members of the set of
training examples X that belong to class c.

While C4.5++ is reasonably consistent at reducing the
error of classical decision tree induction, the technique
has a number of deficiencies. One of these is its com-
putational complexity. The complexity of the algorithm
is O(l · d · a · t), where l is the number of leaves in the
initial tree, d is the maximum depth of the tree, a is the
number of attributes, and t is the number of training
cases. Where these values are large, application of the
algorithm can become infeasible. Much of the efficiency
of decision tree learning is derived from the manner in
which it partitions the data so that, for the majority of
processing (at the leaves), only very small subsets of the
training data need be considered. In contrast, C4.5+ and
C4.5++ require consideration of all training data that
reaches each ancestor of each leaf, once for each attribute
for each leaf. Hence, the entire training set (the data at
the root) must be processed once for each combination
of attribute and leaf.

A further concern is that grafting considers very large
numbers of possible grafts, which must substantially in-
crease risk of overfitting the data. That is, there is a
substantial risk of finding grafts that appear good by
chance. This can be viewed as a form of oversearch ef-
fect [Quinlan & Cameron-Jones, 1995].

Finally, one of the justifications for grafting is that
it allows non-local information (examples from outside
the leaf) to be considered when deciding how to classify
regions within the leaf that are occupied by few or no
training examples. However, the manner in which exter-
nal examples may be used is determined by where in the
tree they are located relative to a leaf, rather than where
in the instance space they fall. Hence, it is likely that
an example, e, that is very close to a region, r, being in-
vestigated will have little influence on the classification
that is selected if e happens to be divided from r by a
cut close to the root of the decision tree. A training case
separated by a single cut closer to the leaf l that contains
r will have greater influence on the class selected for r,
as it will be considered at every ancestor of l as the al-
gorithm climbs the tree. A training case x that fails all
tests leading to l will have as much influence as a case
y that fails only the test at the root of the tree, even
though y may directly adjoin r and x fall at the oppo-

1 2 3 4 5 6 7 8 9 10
A

1
2
3
4
5
6
7
8
9

10

B
∗

∗

∗
∗

◦
◦

◦
◦

◦
◦

◦

◦
◦
◦
◦
◦

∗
∗
∗
∗

¦
¦
¦
¦
¦
¦ ¦
¦
¦

¦

Figure 1: Example instance space as partitioned by C4.5

1 2 3 4 5 6 7 8 9 10
A

1
2
3
4
5
6
7
8
9

10

B
∗

∗

∗
∗

◦
◦

◦
◦

◦
◦

◦

◦
◦
◦
◦
◦

∗
∗
∗
∗

¦
¦
¦
¦
¦
¦ ¦
¦
¦

¦

Figure 2: All-tests-but-one partition for highlighted leaf

site end of the instance space. Both will be considered
once only, when the algorithm considers cuts that could
have been imposed at the root of the tree.

3 Grafting from the all-tests-but-one
partition

Grafting requires a means of estimating the accuracy
of a potential new leaf that contains few or no training
cases. Quinlan [1991] uses the context to estimate the
accuracy of a leaf with few training cases. This context
is called herein the all-tests-but-one-partition (ATBOP).
The ATBOP of a leaf l is the region of the instance space
that is separated from the region covered by l by no more
than one decision surface. It will be reached by any case
that fails no more than one test on a path from the root
of the tree to l. This region is illustrated in Figures 1 and
2. The first figure, replicated from Webb [1997], provides
a representation of a simple two attribute instance space
projected as a two-dimensional geometric space. Objects
of three classes are represented by ∗, ◦, and ¦, where
each of these symbols represents a different class. The
dashed lines represent the decision boundaries created
by the decision tree (presented in Table 1) generated by
C4.5 Release 8 for this training data. Points on a vertical
line are included in the region to its left and points on
a horizontal line are included in the region below. The
region projected in Figure 2 is the ATBOP for the leaf
highlighted in Figure 1. As these figures illustrate, the

Table 1: C4.5 decision tree for example instance space

A > 7 : ¦ (10.0)
A <= 7 :
| A <= 2 : ∗ (4.0)
| A > 2 :
| | B <= 5 : ∗ (5.0/1.0)
| | B > 5 : ◦ (11.0)

ATBOP for a leaf l is the region formed by removing all
and only the decision surfaces that enclose l.

This paper explores the use in decision tree grafting
of estimation within the ATBOP instead of estimation
at ancestor nodes.

Using the ATBOP to evaluate the evidence support-
ing alternative classifications of a region within a leaf
has a number of advantages over using ancestor nodes.
Computational requirements are greatly reduced. Only
one set of data is considered at any leaf l (the cases in
the ATBOP of l), rather than one set for each ancestor
of l. Further, that data set cannot be larger and will
usually be considerably smaller than the largest data set
used by the original technique—all training data, consid-
ered at the root. A further advantage is that the order
in which decision boundaries have been imposed by the
learning algorithm will not affect the outcome, a cut at
the root is treated identically to the deepest cut within
a tree. This appears better motivated than the original
technique. Finally, the number of alternative cuts that
are evaluated is considerably reduced, decreasing the op-
portunity for chance overfitting of the training data.

The resulting algorithm is identical to C4.5++, as pre-
sented in Appendix A, except that Steps 2a and 3a are
each replaced by

n: n is the all-test-but-one-partition of l

4 Experimental evaluation

To evaluate the utility of the new grafting technique,
four algorithms—C4.5, C4.5+, C4.5++, and C4.5A—
were compared on 34 data sets from the UCI reposi-
tory [Blake, Keogh, & Merz , 1998]. These data sets
include all of those employed in previous grafting re-
search [Webb, 1996; 1997] augmented by a wide cross-
selection of discrete valued data sets. Note that the data
sets employed in the earlier studies slightly disadvantage
grafting as they include the discordant and sick data sets
that were specifically added because they were variants
of hypo, the only data set on which C4.5 outperformed
C4.5X in the first experiment conducted. These are the
only data sets selected due to specific predictions about
the performance of grafting, and those predictions were
that grafting would not perform well.

All four algorithms were implemented as a single mod-
ified version of C4.5 release 8 that incorporates all vari-
ations as options. In each case grafting was applied to
pruned decision trees, as previous evaluation has sug-
gested that this provides the best average-case perfor-

mance [Webb, 1997]. All experiments were run on a
SUN Ultra 2 Model 2295 with dual 295 MHz CPUs.

The performance of an algorithm on a data set was
evaluated by ten rounds of three-fold cross validation.
In each round, the data were divided into three sub-
sets. For each subset s in turn, a decision tree was
learned from the remaining two subsets and evaluated
by application to s. This procedure was used to sup-
port estimation of bias and variance. Variance measures
the degree to which the predictions of different learned
classifiers vary as a result of differences in the training
data. Variance impacts on error, as if different predic-
tions (of a single test item) are made as a result of dif-
ferent training data, not all can be correct, and so errors
must result. Bias measures the error due to the central
tendency of the learning algorithm. Kohavi & Wolpert’s
[1996] bias/variance decomposition was selected for this
study as it is both applicable to multiple class domains
and close to the original bias/variance decomposition for
numeric regression [Geman, Bienenstock, & Doursat ,
1992]. Some analyses also consider intrinsic noise, the
minimum possible error for a domain, but this research
followed Kohavi & Wolpert by aggregating this quantity
into bias. The use of ten rounds of three-fold cross val-
idation replicated Kohavi & Wolpert’s bias/variance es-
timation technique except that cross-validation was sub-
stituted for random sampling, ensuring that all available
items were used the same number of times for training
(20 times). Each item was also used the same number of
times for testing (10). This uniformity in the number of
times an item was utilized in each role can be expected
to produce greater consistency across different runs of
the procedure. Under Kohavi & Wolpert’s original pro-
cedure, a given training example x might be used any
number between zero and 30 times for training and any
of zero, 10, 20, or 30 times for testing. This variability
can be expected to increase the (statistical) variance of
the measures obtained for accuracy, bias, and (learning)
variance.

Table 2 presents the mean error (number of misclas-
sifications divided by total classifications) of the thirty
trees learned and evaluated in this manner for each com-
bination of learning algorithm and domain. The last row
of this table presents the mean error across all data sets.
As can be seen, all grafting techniques narrowly outper-
form plain C4.5 on this latter measure. However, this
measure should be treated as indicative only, as it is not
clear to what extent error rates across different data sets
are commensurable.

Table 3 presents specific comparisons of each pair of
learning algorithms. Each algorithm is represented by
three rows in the table. The first row, labeled ṙ, presents
the geometric mean error ratio of each other algorithm
against the nominated algorithm. This is the geomet-
ric mean1 of c/r, where c is the error for the algorithm

1The geometric mean of a set of values x1 to xn is
n
√∏n

i=1
xi. This provides a better aggregate evaluation of

a set of ratio outcomes than arithmetic mean as if the geo-

Table 2: Error by data set
Data Set C4.5 C4.5+ C4.5++ C4.5A
anneal 0.097 0.086 0.086 0.087
audio 0.255 0.255 0.257 0.254
autos 0.253 0.248 0.246 0.245
balance-scale 0.222 0.213 0.213 0.221
breast cancer Slov. 0.294 0.294 0.290 0.294
breast cancer Wisc. 0.056 0.051 0.051 0.054
Cleveland 0.254 0.241 0.239 0.248
credit (Aust.) 0.147 0.146 0.148 0.145
credit (German) 0.282 0.283 0.279 0.280
discordant 0.012 0.013 0.013 0.012
echocardiogram 0.286 0.285 0.285 0.286
glass 0.352 0.344 0.344 0.345
heart 0.238 0.226 0.229 0.234
hepatitis 0.206 0.192 0.194 0.200
horse-colic 0.165 0.165 0.165 0.165
house-votes-84 0.050 0.050 0.050 0.049
Hungarian 0.213 0.209 0.208 0.211
hypo 0.005 0.006 0.006 0.005
iris 0.063 0.064 0.064 0.061
kr-vs-kp 0.008 0.008 0.007 0.008
labor-neg 0.209 0.209 0.209 0.209
lenses 0.204 0.204 0.204 0.204
lymphography 0.228 0.228 0.220 0.224
new-thyroid 0.082 0.088 0.088 0.076
Pima diabetes 0.264 0.260 0.260 0.263
primary tumor 0.618 0.618 0.617 0.618
promoters 0.239 0.239 0.226 0.235
segment 0.041 0.049 0.049 0.039
sick 0.013 0.015 0.015 0.014
sonar 0.280 0.259 0.259 0.269
soybean large 0.102 0.102 0.100 0.102
splice junction 0.068 0.068 0.081 0.067
tic-tac-toe 0.163 0.163 0.163 0.160
waveform 0.276 0.264 0.264 0.267
All data sets 0.184 0.181 0.180 0.181

to which a column relates, and r is the error for the
algorithm to which the row relates. A value below 1.0
indicates an advantage to the algorithm for the column.
A value above 1.0 indicates an advantage to the algo-
rithm for the row. The row labeled s indicates the
win/draw/loss record. The three numbers for each en-
try indicate the number of data sets for which c < r,
c = r, and c > r, respectively. The row labeled p indi-
cates the two-tailed2 binomial probability of obtaining
the relevant win/loss outcome by equiprobable chance.

C4.5+ achieves lower error than C4.5 for twice as many
data sets as the reverse, but the geometric mean error
ratio very slightly favors C4.5. It is notable, however,
that this latter result can be attributed mainly to the
single hypo data set, for which the error differs by only

metric mean indicates an advantage in the error for algorithm
a over that for algorithm b then it will also indicate a dis-
advantage for b over a. Arithmetic mean does not have this
desirable antisymmetry with respect to ratios of outcomes.

2Two tailed tests are used for consistency throughout be-
cause predictions were not made for the outcomes of some
pairwise comparisons.

Table 3: Summary of relative error
Algorithm C4.5 C4.5+ C4.5++ C4.5A

ṙ 1.001 0.999 0.984
C4.5 s 14/13/7 20/5/9 23/10/1

p 0.189 0.061 < 0.001

ṙ 0.998 0.983
C4.5+ s 10/19/5 15/7/12

p 0.302 0.701

ṙ 0.985
C4.5++ s 12/3/19

p 0.281

0.001, but C4.5’s error is so low that this results in a very
high error ratio. If hypo were excluded, the geometric
mean error ratio would be 0.93 in favor of C4.5+. While
the win/draw/loss record is not statistically significant,
many of the data sets do not contain continuous value
attributes, denying C4.5+ a chance to alter the perfor-
mance of C4.5.

Both C4.5++ and C4.5A outperform C4.5 on both ge-
ometric mean error ratio and win/loss/draw record, the
latter advantage being statistically significant at the 0.05
level on a two-tailed sign test for C4.5A but not C4.5++3.

C4.5A outperforms C4.5++ on geometric mean error
ratio, but C4.5++ achieves lower error than C4.5A for
more data sets than the reverse. This latter advantage
is not statistically significant at the 0.05 level, however.
These results do not suggest that either C4.5A or C4.5++

holds a strong advantage in general error performance
over the other.

Table 4 presents the relative bias performance of the
algorithms. Only aggregate results are presented due
to space constraints. This table follows the format of
Table 3 with an additional row labeled Mean that cor-
responds to the final row of Table 2. While the means
across all data sets vary only slightly, the other compar-
ative statistics suggest that C4.5 enjoys a slight general
advantage over C4.5+ and C4.5++ (although not statisti-
cally significant at the 0.05 level) and that C4.5A enjoys
a small but consistent and significant (at the 0.05 level)
advantage over C4.5 and a small advantage over C4.5+

and C4.5++ that approaches significance at the 0.05 level.
Table 5 presents the algorithms’ relative variance per-

formance. All the grafting algorithms enjoy a small but
consistent and significant advantage over C4.5 in this re-
spect. Both C4.5+ and C4.5++ enjoy an advantage over
C4.5A, this being statistically significant at the 0.05 level
for C4.5++. There is a straight forward explanation for
this outcome. The original grafting techniques allow cuts
that could have been imposed high in the tree to be su-
perimposed further down the tree. If small variations in
the training data lead C4.5 to different selections of at-

3As it was predicted that C4.5++ would outperform C4.5,
it could be argued that a one-tailed sign test should be em-
ployed, in which case the outcome of 0.031 would be signifi-
cant at the 0.05 level.

Table 4: Summary of relative bias
Algorithm C4.5 C4.5+ C4.5++ C4.5A
Mean 0.119 0.119 0.120 0.118

ṙ 1.021 1.026 0.995
C4.5 s 7/15/12 11/6/17 15/15/4

p 0.359 0.345 0.019

ṙ 1.005 0.975
C4.5+ s 6/19/9 16/11/7

p 0.607 0.093

ṙ 0.969
C4.5++ s 19/7/8

p 0.052

Table 5: Summary of relative variance
Algorithm C4.5 C4.5+ C4.5++ C4.5A
Mean 0.065 0.061 0.061 0.063

ṙ 0.944 0.939 0.969
C4.5 s - 18/15/1 23/7/4 22/11/1

p < 0.001 < 0.001 < 0.001

ṙ 0.994 1.026
C4.5+ s 8/23/3 10/8/16

p 0.227 0.327

ṙ 1.031
C4.5++ s 6/8/20

p 0.009

tribute for nodes high in a tree, variance is likely to be
enhanced. The superimposition of those alternative cuts
at lower levels in the tree by grafting will counteract this
upwards influence on variance. C4.5A, by not consider-
ing the data at ancestor nodes has less opportunity to
superimpose such cuts, but may do so as a consequence
of supporting evidence for the cut in the ATBOP.

Table 6 analyses the comparative complexity (mea-
sured by number of nodes) of the trees produced by each
algorithm. All the grafting algorithms consistently in-
crease complexity (as they must). C4.5A consistently
produces less complex trees than the previous grafting
algorithms. The mean complexity of the trees produced
by C4.5A is approximately twice that of C4.5 whereas
the ratio for C4.5++ is more than 7 to 1.

A major advantage of C4.5A is a reduction in compu-
tational complexity in comparison to the original graft-
ing algorithms. The average compute times for the four
systems are C4.5: 0.095; C4.5+: 4.239, C4.5++: 4.422;
and C4.5A: 0.165 CPU seconds. For the grafting al-
gorithms these times include both induction of the ini-
tial tree and postprocessing to produce the final tree,
and hence are consistently greater than those for C4.5.
Times exclude reading the training or test data from disk
but include application of the classifier to the test data
and minor overheads associated with measuring bias and
variance. For no data set did C4.5A more than triple the
compute time of C4.5. The greatest increase in compute

Table 6: Summary of relative complexity
Algorithm C4.5 C4.5+ C4.5++ C4.5A
Mean 38.0 106.7 281.9 64.1

ṙ 1.965 3.378 1.451
C4.5 s 0/11/23 0/1/33 0/4/30

p < 0.001 < 0.001 < 0.001

ṙ 1.719 0.739
C4.5+ s 0/13/21 23/1/10

p < 0.001 0.035

ṙ 0.430
C4.5++ s 33/1/0

p < 0.001

time due to the other grafting algorithms was for the
segment data set for which both required 112 times the
compute time of the original C4.5.

5 Summary and Conclusions

Grafting from the ATBOP has demonstrated a number
of advantages over previous grafting algorithms. With-
out signficantly affecting error performance, grafting
from the ATBOP dramatically reduces compute times
and the size of inferred trees. Grafting has not previ-
ously been evaluated in terms of bias and variance. The
current studies revealed that the previous grafting tech-
niques operated primarily be variance reduction. Graft-
ing from the ATBOP is slightly less effective at variance
reduction than the previous techniques, but introduces
a compensating bias reduction effect. The bias/variance
operational profile of the original grafting techniques is
similar to that of bagging in that it reduces variance only
[Bauer & Kohavi, in press]. In contrast, ATBOP grafting
has a bias/variance reduction profile similar to boosting
in that it reduces both bias and variance [Bauer & Ko-
havi, in press]. While the error reduction effect of graft-
ing is of much smaller magnitude than that of bagging
or boosting, ATBOP grafting produces a single decision
tree which will usually be much more straight forward
to interpret than the committees of decision trees pro-
duced by boosting and bagging. In consequence, grafting
deserves serious consideration for machine learning ap-
plications where it is desirable to minimize error while
producing a single comprehensible classifier.

A C4.5++ Algorithm

Let cases(n) denote the set of all training cases that can reach
node n, unless there are no such cases in which case cases(n)
shall denote the set of all training cases that can reach the
parent of n.

Let value(a, x) denote the value of attribute a for training
case x.

Let pos(X, c) denote the number of objects of class c in the
set of training cases X.

Let class(x) denote the class of object x.

Let Laplace(X, c) = pos(X,c)+1
|X|+2

where X is a set of training

cases, |X| is the number of training cases and c is a class.

Let upperlim(n, a) denote the minimum value of a cut c on
continuous attribute a for an ancestor node x of n with re-
spect to which n lies below the a ≤ c branch of x. If there is
no such cut, upperlim(n, a) = ∞. This determines an upper
bound on the values for a that may reach n.

Let lowerlim(n, a) denote the maximum value of a cut c on
continuous attribute a for an ancestor node x of n with re-
spect to which n lies below the a > c branch of x. If there is
no such cut, lowerlim(n, a) = −∞. This determines a lower
bound on the values for a that may reach n.

Let prob(x, n, p) be the probability of obtaining x or more
positive objects in a random selection of n objects if the prob-
ability of selecting a positive object is p.

To post-process leaf l dominated by class c

1. Initialize to {} a set of tuples t containing potential tests.

2. For each continuous attribute a

(a) Find values of

n: n is an ancestor of l
v : ∃x : x ∈ cases(n) & v = value(a, x) & v ≤
min(value(a, y): y ∈ cases(l) & class(y) = c) &
v > lowerlim(l, a)

k: k is a class

that maximize L′ = Laplace({x : x ∈ cases(n) &
value(a, x) ≤ v & value(a, x) > lowerlim(l, a)}, k).

(b) Add to t the tuple 〈n, a, v, k,L′,≤〉
(c) Find values of

n: n is an ancestor of l
v : ∃x : x ∈ cases(n) & v = value(a, x) & v >
max(value(a, y): y ∈ cases(l) & class(y) = c) &
v ≤ upperlim(l, a)

k: k is a class

that maximize L′ = Laplace({x : x ∈ cases(n) &
value(a, x) > v & value(a, x) ≤ upperlim(l, a)}, k).

(d) Add to t the tuple 〈n, a, v, k,L′, >〉
3. For each discrete attribute a for which there is no test at

an ancestor of l

(a) Find values of

n: n is an ancestor of l
v: v is a value for a
k: k is a class

that maximize L′ = Laplace({x : x ∈ cases(n) &
value(a, x) = v}, k).

(b) Add to t the tuple 〈n, a, v, k,L′, =〉
4. Remove from t all tuples 〈n, a, v, k,L, x〉 such that L ≤

Laplace(cases(l), c) or prob(x, n, Laplace(cases(l), c)) ≤
0.05.

5. Remove from t all tuples 〈n, a, v, c,L, x〉 such that there
is no tuple 〈n′, a′, v′, k′,L′, x′〉 such that k′ 6= c & L′ < L.

6. For each 〈n, a, v, k,L, x〉 in t ordered on L from highest
to lowest value

If x is ≤ then

(a) replace l with a node t with the test a ≤ v.
(b) set the ≤ branch for t to lead to a leaf for class k.
(c) set the > branch for t to lead to l.

else if x is > then

(a) replace l with a node t with the test a ≤ v.

(b) set the > branch for t to lead to a leaf for class k.
(c) set the ≤ branch for t to lead to l.

else (x must be =)

(a) replace l with a node t with the test a = v.
(b) set the = branch for t to lead to a leaf for class k.
(c) set the 6= branch for t (implemented as a C4.5 sub-

set branch) to lead to l.

References
[Bauer & Kohavi, in press] E. Bauer & R. Kohavi. An

empirical comparison of voting classification algo-
rithms: Bagging, boosting, and variants. Machine
Learning, in press.

[Blake, Keogh, & Merz , 1998] C. Blake, E. Keogh, &
C. J. Merz. UCI repository of machine learning
databases. [Machine-readable data repository]. Uni-
versity of California, Department of Information and
Computer Science, Irvine, CA., 1998.

[Breiman, 1996] L. Breiman. Bagging predictors. Ma-
chine Learning, 24:123–140, 1996.

[Freund & Schapire, 1996] Y. Freund & R. E. Schapire.
Experiments with a new boosting algorithm. In Pro-
ceedings of the Thirteenth International Conference on
Machine Learning, pages 148–156, Bari, Italy, 1996.
Morgan Kaufmann.

[Geman, Bienenstock, & Doursat , 1992] S. Geman, E.
Bienenstock, & R. Doursat. Neural networks and the
bias/variance dilemma. Neural Computation, 4:1–48,
1992.

[Kohavi & Wolpert, 1996] R. Kohavi & D. Wolpert.
Bias plus variance decomposition for zero-one loss
functions. In Proceedings of the 13th International
Conference on Machine Learning, pages 275–283,
Bari, 1996. Morgan Kaufmann.

[Quinlan, 1991] J. R. Quinlan. Improved estimates for
the accuracy of small disjuncts. Machine Learning, 6:
93–98, 1991.

[Quinlan, 1996] J. R. Quinlan. Bagging, boosting, and
C4.5. In AAAI-96, 1996.

[Quinlan, 1998] J. R. Quinlan. Miniboosting decision
trees. Submitted for publication, August 1998.

[Quinlan & Cameron-Jones, 1995] J. R. Quinlan &
R. M. Cameron-Jones. Oversearching and layered
search in empirical learning. In IJCAI’95, pages 1019–
1024, Montreal, 1995. Morgan Kaufmann.

[Webb, 1996] G. I. Webb. Further experimental evi-
dence against the utility of Occam’s razor. Journal
of Artificial Intelligence Research, 4:397–417, 1996.

[Webb, 1997] G. I. Webb. Decision tree grafting. In
IJCAI-97: Fifteenth International Joint Conference
on Artificial Intelligence, pages 846–851, Nagoya,
Japan, August 1997. Morgan Kaufmann.

