

1

Faster and More Accurate Classification of Time Series by Exploiting a Novel

Dynamic Time Warping Averaging Algorithm
François Petitjean

1
, Germain Forestier

2
, Geoffrey I. Webb

1
,

 Ann E. Nicholson
1
, Yanping Chen

3
 and Eamonn Keogh

3

1
Faculty of IT, Monash University, Melbourne, Australia, firstname.lastname@monash.edu

2
 MIPS (EA 2332), Université de Haute Alsace, Mulhouse, France, germain.forestier@uha.fr

3
 Computer Science and Engineering Dpt, University of California, Riverside, USA {ychen053,eamonn}@cs.ucr.edu

Abstract—A concerted research effort over the past two

decades has heralded significant improvements in both the

efficiency and effectiveness of time series classification. The

consensus that has emerged in the community is that the best

solution is a surprisingly simple one. In virtually all domains,

the most accurate classifier is the Nearest Neighbor algorithm

with Dynamic Time Warping as the distance measure. The

time-complexity of Dynamic Time Warping means that

successful deployments on resource constrained devices

remain elusive. Moreover, the recent explosion of interest in

wearable computing devices, which typically have limited

computational resources, has greatly increased the need for

very efficient classification algorithms. A classic technique to

obtain the benefits of the Nearest Neighbor algorithm, without

inheriting its undesirable time and space complexity, is to use

the Nearest Centroid algorithm. Unfortunately, the unique

properties of (most) time series data mean that the centroid

typically does not resemble any of the instances, an unintuitive

and underappreciated fact. In this paper we demonstrate that

we can exploit a recent result by Petitjean et al. to allow

meaningful averaging of “warped” time series, which then

allows us to create super-efficient Nearest “Centroid”

classifiers that are at least as accurate as their more

computationally challenged Nearest Neighbor relatives. We

demonstrate empirically the utility of our approach by

comparing it to all the appropriate strawmen algorithms on

the ubiquitous UCR Benchmarks, and with a case study in

supporting insect classification on resource constrained

sensors.

Keywords—time series, averaging, dynamic time warping,

classification, data mining

I. INTRODUCTION

The last decade has seen increasing acceptance that the

Nearest Neighbor (NN) algorithm with Dynamic Time

Warping (DTW) as the distance measure is the technique of

choice for most time series classification problems. The

NN-DTW algorithm has been shown to be competitive or

superior in domains as diverse as pen-based computing,

gesture recognition, robotics and ECG classification.

Moreover recent comprehensive studies have strongly

validated this idea:

• In a near exhaustive empirical study in [1] the

authors compared NN-DTW to nearly all of the most

highly cited distance measures in the literature on dozens of

datasets. They found that no distance measure consistently

beats DTW, but DTW almost always outperforms most

methods that were originally touted as superior, based on

less complete empirical evaluations.

• In [2] (and to a lesser extent [3]) the authors

examine the assumption that the Nearest Neighbor

classifier is the best technique and consider other

classifiers, including kernel methods, neural networks and

decision trees. Once again, the evidence strongly suggests

that the structure of time series (autocorrelated values, high

apparent but low intrinsic dimensionality) lends itself to the

Nearest Neighbor algorithm and to NN-DTW in particular.

Because of these findings, most recent research has

simply assumed the utility of NN-DTW and concentrated

on mitigating the oft-lamented drawback of DTW: its time

complexity. There has also been recent significant progress

on this, such as Rakthanmanon et al.’s result showing that,

under reasonable constraints, nearest neighbor queries

under DTW can be answered in time that is no worse than

twice that of the Euclidean distance [4].

Nevertheless there are still situations where DTW (or for

that matter, Euclidean distance) has severe tractability

issues. While the accuracy of NN is a function of the size

of the training set, unlike eager learners, the classification

time is also a function of it. Thus, to obtain a required level

of accuracy, it may be necessary to compare the incoming

exemplar to dozens or hundreds of training objects. While

optimizations such as those in [4-6] can mitigate somewhat

the time needed, NN-DTW may still be intractable in some

situations. This is especially true for resource constrained

devices such as wearable computers and embedded medical

devices.

One obvious fix is to reduce the size of the training set to

the largest size that can be searched at each time interval.

Xi et al. [3] showed that by adapting classic data editing

techniques it is possible to create a “smart” subset that has

an error-rate as low as a much larger random subset.

Nevertheless, this result only partly mitigates the problem.

The Nearest Centroid Classifier (NCC) is an apparent

solution to this problem. NCC allows us to leverage the

strengths of the NN algorithm, while avoiding its

substantial space and time requirements. Unfortunately, the

centroid is defined only for simple metrics, which DTW is

not. This is not a trivial semantic point. As Figure 1 shows,

even if we consider only instances that have a very low

mutual DTW distance, if we attempt standard Euclidean

averaging, the resultant centroid will typically resemble

none of the parent objects.

2

The contributions of this paper are as follows:

1. We leverage off and extend a little known recent

result that allows us to meaningfully define

“centroid” under DTW [8].

2. We show how to use this result to condense large

datasets into much smaller (as small as a single

instance per class) datasets.

3. We demonstrate that by carefully condensing the

dataset, we can build a classification model using

centroids that favorably competes with the state-of-

the-art NN-DTW, but can classify time series up to

100x faster, which makes it compatible with real-

time classification and embedded systems.

4. We show that, in some domains, the condensed

datasets allows us to derive a classifier with greater

accuracy. This less intuitive result arises because the

averaging combines evidence from all exemplars to

produce prototypes that are more like the class’

Platonic ideal than any individual instance.

The remainder of this paper is organized as follows.

First, we review related and background work. Then in

Section III we introduce the necessary definitions and

formally define the problem to be solved, before presenting

our solution in Section IV. In Section V we provide strong

empirical validation of our claims regarding both accuracy

and computational time, then offer conclusions and

directions for future work in Section VI.

Note that this paper is an extended version of our paper

appearing in IEEE ICDM’14 as [9].

II. RELATED WORK AND BACKGROUND

The idea that the mean of a set of objects may be more

representative than any individual object from that set dates

back at least a century to a famous observation of Francis

Galton. Galton noted that the crowd at a county fair

accurately guessed the weight of an ox when their

individual guesses were averaged [10]. Galton realized that

the average was closer to the ox's true weight than the

estimates of most crowd members, and also much closer

than any of the separate estimates made by cattle experts.

This idea is frequently exploited in machine learning.

For example the Nearest Centroid Classifier [11,12,13]

generalizes the Nearest Neighbor classifier (NN) by

replacing the set of neighbors with their centroid. It uses

the center of mass of each class as the prototype against

which every test instance is compared.

It should be noted that there are two separate

motivations for using the Nearest Centroid Classifier. Most

obviously it is faster, being O(1) rather than O(n).

Because this may be counterintuitive, we will

demonstrate it in an intuitive setting. Consider a domain in

which all exemplars are uniformly distributed in the unit

square, with objects having an X-value less than 0.5

assigned the label A, otherwise B.

Figure 2 illustrates an example in which there are just

three instances per class.

For balanced dataset sizes from 2 to 4,000, we

compared the error rates of the NN and the NCC on this

domain, each time averaging over 1,000 runs. The results

are shown in Figure 3; note that these results assume that

the decision boundary is 𝑥 = 0.5, that the samples for each

class are uniformly sampled in both half-squares, and that

the test samples are uniformly sampled in the unit square.

Even without any experiments we know that the two

algorithms must agree on the far left side of the figure, and

since the centroid of a single point is that point, the two

algorithms are identical here. A little more introspection

tells us that the algorithms will also agree on the far right

side of the figure. What is less obvious is that the Nearest

0

0.3

0 12 24

Hours

Oil Refinery:

Pressure-13

Euclidean averaging produces a

spurious secondary peak

The proposed DTW averaging

produces an intuitive prototype

100 101 102 103 1040

0.1

0.2

Nearest Neighbor Algorithm

Nearest Centroid Algorithm

E
rr

o
r-

R
at

e

Figure 1: top) Three examples of daily patterns at an oil refinery [7].
middle) When averaged under the Euclidean distance the resulting

centroid has an additional peak that is in none of the original time series.

bottom) When averaged using the DTW based method proposed in this
work, the “centroid” is more intuitive.

0 0.5 1

0

1

0 0.5 1

0

1

CentroidCentroid

Decision
Boundary

Decision
Boundary

Figure 2: A simple classification problem in which the concept is the left

vs. right side of the unit square. This instance of the problem has three

points per class (left). Here NN has error-rate of 12.60%, while the
Nearest Centroid classifier (right) with the same instances achieves an

error-rate of just 5.22%.

Figure 3: The error rate of two algorithms, NCC (blue) and NN (red) for
increasingly large training data sizes of the “left vs. right side of the unit

square” problem.

3

Centroid Classifier is more accurate in between those two

extremes. III.1.

It is important to note that the Nearest Centroid

Classifier is not guaranteed to be more accurate than the

NN classifier in general. For example, consider the

“Japanese flag” dataset (adapted from [14]) shown in

Figure 4. Here the NN algorithm approaches zero error-rate

for large training dataset sizes, while in contrast the Nearest

Centroid Classifier steadfastly achieves just the default rate.

Figure 4: A two-class problem in which objects within 1.2 of the origin are

in class A, otherwise they are in class B. With enough training data the

NN classifier can learn this concept very well; however the Nearest
Centroid Classifier is condemned to perform at the default rate.

In spite of the existence of such pathological cases, the

Nearest Centroid Classifier often outperforms the NN

algorithm on real datasets, especially if one is willing (as

we are) to generalize it slightly; for example, by using

clustering to allow a small number of centroids, rather than

just one. Thus our claim is simply:

 Sometimes NCC has similar or lower accuracy than

NN. In such cases we prefer NCC because it is faster

and requires less memory.

 Sometimes NCC can be more accurate than NN. In

such cases we prefer NCC because of the accuracy

gains, and the reduced computational requirements

come “for free”.

The above discussion at first may appear to be moot for

time series, because the concept of “centroid” for warped

time series is ill-defined. It is the central contribution of

this paper to show that we can take the “centroid” for

warped time series in a principled manner that allows us to

achieve both improvements in accuracy and reduced

computational requirements at run time.

In the last decade the cognitive science community has

presented strong evidence that the visual system’s

remarkable abilities stem, at least in part, from its ability to

represent sets of objects by a “gist” or “ensemble”2, which

may be simply the average of the objects [17]. A recent

paper notes that the major research direction of the

cognitive science community is devoted simply to

1 The source code proving the statistical significance is available

at [15]; it performs two-tailed Bonferronni-Dunn test to

compare pairs of methods NCC to NN [16].
2 Note that the cognitive science use of “ensemble” is unrelated to

the more familiar machine learning meaning.

“determining how these (average) representations are

computed, why they are computed and where they are

coded in the brain” [18].

The difficulty faced by the cognitive scientists is similar

to the pragmatic difficulty we face here. In some cases

averages may be well defined, for example, the average

height of Norwegian men. However, for some objects it is

much less clear how to represent and compute averages.

For example, computing an average face has been pursued

since at least 1883 (again, Francis Galton, using composite

photography) but significant progress has only been made

in the last decade. Tellingly, this progress in face averaging

was exploited to produce dramatic improvements in

classification accuracy with a Science paper [19] boasting

“100% Accuracy in Automatic Face Recognition” (this is

the paper’s actual title).

Compared to the complexity inherent in faces, time

series might seem simple to average, however as Figure 1

hints at, the classic definition of centroid for time series

usually produces a prototype which is not typical of the

data.

IV. AVERAGING UNDER TIME WARPING

We start by presenting the problem of creating average
centroids that are consistent with the warping behavior of
DTW. We then introduce DBA, which is the averaging
method that will be used to derive our fast and accurate
classifier in the next section.

For our problem, each object in the data set is a time
series, which may be of different length.

Definition 1: Time Series. A time series 𝑇 = (𝑡1, … , 𝑡𝐿)
is an ordered set of real values. The total number of real
values is equal to the length of the time series (𝐿). A dataset
𝑫 = {𝑇1, … , 𝑇𝑁} is a collection of 𝑁 such time series.

A. Averaging under time warping – related work

Computational biologists have long known that

averaging under time warping is a very complex problem,

because it directly maps onto a multiple sequence

alignment: the “Holy Grail” of computational biology [20].

Finding the multiple alignment of a set of sequences, or its

average sequence (often called consensus sequence in

biology) is a typical chicken-and-egg problem: knowing the

average sequence provides a multiple alignment and vice

versa. Finding the solution to the multiple alignment

problem (and thus finding of an average sequence) has

been shown to be NP-complete [21] with the exact solution

requiring 𝑂(𝐿𝑁) operations for N sequences of length L.

This is clearly not feasible with more than a dozen

sequences (just 45 sequences of length 100 would require

more operations than the number of particles in the

universe).

Finding the average of a set is best seen as an

optimization problem, as explained by the definition below.

-3 0 3

-3

0

3

4

Definition 2: Average object. Given a set of objects
𝑂 = {𝑂1, … , 𝑂𝑁} in a space 𝐸 induced by a measure 𝑑, the
average object �̅� is the object that minimizes the sum of the
squares to the set:

arg min
�̅�∈𝐸

∑ 𝑑²(�̅�, 𝑂𝑖)

𝑁

𝑖=1

 (1)

This definition demonstrates that finding the average of

a set is intrinsically linked to the measure that is used to

compare the data. This means that the average method has

to be specifically designed for every measure that is used to

compare data.

In our case, the objects are time series and the measure

is DTW. We can thus now define what the average

sequence should be, in order to be consistent with Dynamic

Time Warping.

Definition 3: Average time series for DTW. Given a set
of time series 𝑫 = {𝑇1, … , 𝑇𝑁} in a space 𝐸 induced by

Dynamic Time Warping, the average time series �̅� is the
time series that minimizes:

arg min
�̅�∈𝐸

∑ DTW²(�̅�, 𝑇𝑖)

𝑁

𝑖=1

 (2)

Many attempts at finding an averaging method for

DTW have been made since the 1990s [22-25]. Researchers

have exploited the idea that the exact average of two time

series can be computed in 𝑂(𝐿2). These papers have

proposed different tournament schemes (the guide trees in

computational biology) in which the sequences should be

averaged first. Interestingly, none of these authors appear to

have made the connection with the multiple sequence

alignment problem; the most advanced method in 2009,

PSA [24], heuristically averages the closest objects first,

which corresponds to an idea proposed some 20 years

earlier in computational biology [26].

There is a limit, however, to which the comparison

between biological sequences and time series can be

pushed. Ultimately, time series are sequences of real-

valued numbers and not of discrete symbols like

DNA/RNA sequences. While two genes coding for

hemoglobin have almost certainly evolved from a common

ancestor (although homoplasy can almost never be

completely ruled out), no such lineage is present for time

series. Nevertheless, we can sometimes imagine a domain

in which there is an idealized Platonic prototype, of which

we can only see corrupted (i.e. “warped”) examples. In this

view, DTW based averaging can be seen as an attempt to

recover the “ancestor” state. For example, the ideal

prototype may be an individual’s internal (muscle memory)

representation of her golf swing or her rendition of a song,

of which we can only observe external performance

approximations.

B. DBA: the best-so-far method to average time series for

Dynamic Time Warping

DTW Barycenter Averaging (DBA), introduced in [8],

exploits the parallels between time series and

computational biology, while taking into account the

unique properties of the former. We have shown in [8] that

DBA outperforms all existing averaging techniques on all

datasets of the UCR Archive [27] available at the time. In

particular, it always obtained lower residuals (Equation 2)

than the state-of-the-art methods with a typical margin of

about 30%, making it the best method to date for time

series averaging for DTW.

DBA iteratively refines an average sequence �̅� and

follows an expectation-maximization scheme:

1. Consider the average sequence �̅� fixed and find the

best multiple alignment3 𝑀 of the set of sequences

𝑫 with regard to �̅�, by individually aligning each

sequence of 𝑫 to �̅�.

2. Now consider 𝑀 fixed and update �̅� as the best

average sequence consistent with 𝑀.

Table I gives the pseudocode for DBA.

Algorithm 1 simply finds the initial average sequence �̅�

and then refines it I times. The medoid sequence is usually

a good candidate for the initialization of the algorithm.

Note that if computation time is a concern, we have shown

that randomly picking any sequence of the set usually gives

good results also (see [8] – Section 4.5).

Algorithm 2 describes one iteration of DBA, i.e. one

refinement of the current average sequence. Refining an

average sequence is composed of two steps. First, every

sequence 𝑆 in 𝑫, the set of sequences to average, is aligned

to the to-be-refined average sequence 𝑇𝑖𝑛𝑖𝑡
̅̅ ̅̅ ̅̅ . It is important

to note that this process is performed independently for

every sequence in the set, and thus does not use any order

on the sequences, unlike other state-of-the-art methods.

Next, the position of every element of the average sequence

�̅�(𝑖) is set as the center of the elements of the sequences

that had been associated to element 𝑖 of 𝑇𝑖𝑛𝑖𝑡
̅̅ ̅̅ ̅̅ . When the

time series have only one dimension, this is simply

performed with the arithmetic mean; for higher-

dimensional sequences the position of every element can be

updated as the barycenter of the set, i.e. using the

arithmetic mean on each dimension separately [29].

Algorithm 3 simply computes DTW between the

reference sequence and the set of sequences, and

memorizes what elements of the sequences have been

associated with each element of the reference sequence.

3 It actually finds the compact multiple alignment [28].

5

TABLE I. GENERAL ALGORITHM FOR DBA

Algorithm 1. DBA(𝑫 , I)

Require: 𝑫: the set of sequences to average
Require: 𝐼: the number of iterations

1:
2:
3:

�̅� = medoid(𝑫) // get the medoid of the set of sequences 𝑫
do 𝐼 times �̅� = DBA_update(�̅� , 𝑫)
return �̅�

Algorithm 2. DBA_update(𝑇𝑖𝑛𝑖𝑡
̅̅ ̅̅ ̅̅ , 𝑫)

Require: 𝑇𝑖𝑛𝑖𝑡
̅̅ ̅̅ ̅̅ : the average sequence to refine (of length L)

Require: 𝑫: the set of sequences to average

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:

// Step #1: compute the multiple alignment for 𝑇𝑖𝑛𝑖𝑡
̅̅ ̅̅ ̅̅

alignment = [∅, ⋯ , ∅] // array of L empty sets
for each S in 𝑫 do

alignment_for_S = DTW_multiple_alignment (𝑇𝑖𝑛𝑖𝑡
̅̅ ̅̅ ̅̅ , S)

for i=1 to L do
alignment[i] = alignment[i] ∪ alignment_for_S[i]

done
done
// Step #2: compute the multiple alignment for the alignment
let �̅� be a sequence of length L
for i=1 to L do

�̅�(𝑖) = mean(alignment[i]) //arithmetic mean of the set
done
return �̅�

Algorithm 3. DTW_multiple_alignment (𝑆𝑟𝑒𝑓 , S)

Require: 𝑆𝑟𝑒𝑓: the sequence for which the alignment is computed

Require: S: the sequence to align to 𝑆𝑟𝑒𝑓 using DTW

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

// Step #1: compute the accumulated cost matrix of DTW
cost = DTWCumulMat(𝑆𝑟𝑒𝑓 , S)

// Step #2: store the elements associated with 𝑆𝑟𝑒𝑓

L = length(𝑆𝑟𝑒𝑓)

alignment = [∅, ⋯ , ∅] // array of L empty sets
𝑖 = rows(cost) // i iterates over the elements of 𝑆𝑟𝑒𝑓

𝑗 = columns(cost) //j iterates over the elements of S
while (𝑖 > 1) && (𝑗 > 1) do

alignment[𝑖] = alignment[𝑖] ∪ 𝑆(𝑗)
if 𝑖 == 1 then 𝑗 = 𝑗 − 1
else if 𝑗 == 1 then 𝑖 = 𝑖 − 1
else

score = min(cost[i-1][j-1] , cost[i][j-1] , cost[i-1][j])
if score = = cost[i-1][j-1] then

𝑖 = 𝑖 − 1
j = 𝑗 − 1

else if score = = cost[i-1][j] then 𝑖 = 𝑖 − 1
else 𝑗 = 𝑗 − 1
end if

end if
done
return alignment

Algorithm 4. Medoid(𝑫)

Require: 𝑫: the set of sequences to find the medoid from

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:

minSS = +∞ //minimum sum of squares
for each 𝑆1 in 𝑫 do

// computing the sum of squares for 𝑆1
tmpSS=0
for each 𝑆2 in 𝑫 do

tmpSS+= (𝐷𝑇𝑊(𝑆1, 𝑆2))
2

done
if tmpSS < minSS then

medoid = 𝑆1
minSS = tmpSS

end if
done
return medoid

(a) (b) (c)

Figure 5: Visual comparison of the Euclidean average to our proposed

DBA approach. This example highlights the inability of the Euclidean

average to preserve the shape of warped time series. (a) One class of the
Trace dataset [22]. (b) The average time series produced by the Euclidean

average. (c) The average time series produced by DBA.

Note that an implementation of this pseudocode in

Matlab and Java is available at [30].

Figure 5 shows that DBA can preserve the shape of

warped time series while the traditional Euclidean average

provides a prototype that does not resemble any of the time

series of the set. Note also that in Figure 1 we showed a

similar example of the algorithm’s superior output on three

examples of a pattern associated with an oil refinery

process. This visual comparison is, however, only

qualitative. Next we demonstrate the quantitative

superiority of DBA over other techniques, i.e. its ability to

minimize the sum of the residuals expressed in Equation 2.

Our previous work in [8] demonstrated the superiority

of DBA over state-of-the-art techniques (Non-Linear

Alignment and Averaging Filters – NLAAF – and

Prioritized Shape Averaging - PSA) using the UCR

archive, then composed of 20 datasets. We complement this

evaluation with Appendix B, which quantitatively assesses

DBA against both the medoid sequence and the Euclidean

average – which had not been included in [8] – over all 44

datasets of the UCR archive [27]. These results show that

DBA outperforms by far these two methods on all the

datasets in the archive.

In addition, this paper also extends the definition of

DBA by providing a proof of its convergence for l2-norm,

i.e., that the sum of the squares (Equation 2) always

6

decreases between two iterations (or refinements). This

proof is provided in Appendix A.

V. OUR FAST AND ACCURATE CENTROID-BASED

CLASSIFIER

In recent years there has been an increasing interest in

using anytime algorithms for data mining [3,31,39].

However the variant known as contract algorithms have

received less attention. Contract algorithms are a special

type of anytime algorithms that require the amount of run-

time to be determined prior to their activation. In other

words, contract algorithms offer the anytime tradeoff

between computation time and quality of results, but they

are not interruptible.

Problem Statement Contract Time Series Classification:

Given (1) a large time series training dataset, (2) an upper

bound on the amount of computational resources that may

be consumed for classification, and (3) no limits on the

computational resources that may be consumed for training,

produce the most accurate classifier possible.

 We assume that the computational resource constraint

will be time, not space, and that it will be given to us in the

form of the number of CPU cycles available each second.

For ease of exposition we assume that the constraint will be

given as a positive integer C, which is the number of

exemplars per class that we can examine when asked to

classify a new object. Figure 6 illustrates this problem

statement.

Figure 6: A visual intuition of an instance of our problem statement: Given
the Oil-13 time series training dataset (left), and a user constraint C, here

‘1’. Produce a new dataset with C items per class (right), such that the

accuracy on future data is maximized.

As we explained in the introduction, based on the

consensus of the literature and our own experiments, we

believe that the best solution will be a variant of Nearest

Neighbor classification. While decision trees and Bayesian

classifiers are very efficient, and although time series

classification is an active and competitive research area, no

competitively accurate classifiers for time series based on

these methods have been produced [2,3].

What then is the space of techniques we can explore?

After exhausting all known optimization techniques (early

abandoning, removing the unnecessary square root

calculation, lower bounding, etc.) we can consider

manipulating the following:

 Reducing the data cardinality, and doing NN-DTW on

the reduced cardinality data. While classification on

suitable reduced cardinality data has little effect on

accuracy [32], it only helps scalability on specialized

hardware. We are aiming for a general solution.

 Reducing the data dimensionality, and doing NN-DTW

on the reduced dimensionality data. This idea has been

in the literature for at least two decades, and seems to

have been rediscovered many times. The idea works

well when the raw data is oversampled. For example,

some bedside machines report electrocardiograms at

up to 4,096Hz, yet there is little evidence that anything

above 256Hz is needed for classification. However

here we assume that the data we are given is sampled

at an appropriate rate.

 Reducing the number of objects the nearest neighbor

algorithm must see. This can be done by selecting a

subset of the data (which is known as data editing or

condensing) or aggregating the data.

As the reader will have intuited by now, it is the last

idea we intend to pursue. There are several obvious ways to

reduce the number of objects the nearest neighbor

algorithm must see, and several variants of intelligent data

editing have been proposed [3]. However to the best of our

knowledge no one has consistently considered data

aggregation for NN-DTW. When it has been considered,

the artifacts produced by averaging methods for Dynamic

Time Warping, such as the one hinted at in Figure 1 and

acknowledged in the literature by [8,33,34], suggests that

this is an unpromising avenue to explore.

Conversely, as noted above, aggregation methods

(including, but not limited to the Nearest Centroid

Classifier) have certain properties that seem very desirable.

In particular, they provide a condensed model of the

aggregated set, allowing speed up, and they weight

information from every training instance, potentially

improving accuracy. However, as we explain in the next

paragraph, simply averaging all the objects in each class is

unlikely to work well in most domains, and this motivates a

clustering-based data condensing approach.

While it is possible that for some datasets, a single

prototype may capture the “essence” of a class, for other

datasets it may require a small number of prototypes.

Moreover, a single dataset may exhibit both possibilities on

a class-by-class basis. For example, for the “Japanese flag”

dataset shown in Figure 4, a single centroid is clearly

optimal for the circle/red class, but we would need, say

eight suitably arranged examples from the green/square

class arranged in an octagon to carve out a decision

boundary that approximates the true circular decision

boundary. To give a more concrete example, consider the

case study in insect surveillance we explore in Section

VI.A, which appears to be a single class, Culex

stigmatosoma, the mosquito that spreads West Nile virus.

However, this insect, like most mosquitoes, is highly

sexually dimorphic. If we try to create a single template to

represent both males and females we are condemned to

have a template that represents neither. However, by

Condesed_Oil =Reduce(Oil - 13,1)

Oil - 13

Condesed_Oil

7

clustering each individual class, we hope to be able to

account for any natural polymorphism within the class. In

Table II we present the algorithm for such a clustering-

based approach to condensing a dataset.

TABLE II. ALGORITHM TO CONDENSE TRAINING DATASET

Algorithm 5. Reduce(Data, C)
Require: Data: dataset; C: The number of exemplars per class

1:
2:
3:
4:
5:
6:
7:

// partition the data into C sets of time series
Clusters = do_clustering(Data,C) //for example with K-means
Condensed_Data = ()
for each Cluster in Clusters do

Condensed_Data.add(DBA(Cluster,15))
done
return Condensed_Data

It is important to note, however, that we see our main

contribution as proposing a warping-invariant-averaging

based condensation framework, of which Algorithm 4

given in Table II is simply one concrete and

straightforward partitional clustering example. To further

reinforce this notion in our experimental section, we also

consider a warping-invariant-averaging hierarchical

clustering based condensation framework.

VI. EXPERIMENTAL EVALUATION

In this section, we assess the performance of our

averaging-based reduction methods for time series

classification, over the state-of-the-art data condensing

methods (which do not average time series). Note that the

distance measure used for all experiments is DTW.

We compare the following algorithms; the last two of

which exploit our averaging technique:

 Random Selection: Here we randomly sample the

training data, selecting as many samples as we can use

under the contract time.

 Drop{X}: There has been significant work on data

editing (numerosity reduction/condensing) for nearest

neighbor classification [35]. All these algorithms

create some list of nearest neighbors, of both the same

class (associates) and of different classes (enemies),

and use a weighted scoring function based on this list

to determine the worst exemplar. We compare to three

variants; Drop1, Drop2 and Drop3, see [35] for full

details on their subtle differences.

 Simple Rank (SR): This method gives to each

instance a rank according to its contribution to the

classification [36]. A leave-one-out 1-NN

classification is performed on the training set, and the

rank of the instance is calculated as the following

formula:

𝑟𝑎𝑛𝑘(𝑥) = ∑ {
1 𝑖𝑓 𝑐𝑙𝑎𝑠𝑠(𝑥) = 𝑐𝑙𝑎𝑠𝑠(𝑥𝑖)

−2
(#𝑐𝑙𝑎𝑠𝑠𝑒𝑠 − 1)⁄ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}

𝑖

where 𝑥𝑖 are associates of 𝑥. The ties are broken by

sorting the instances according to their distance to their

nearest “enemy” (standard terminology).

 K-Medoids: This well-known method, also known as

“partitioning around medoids”, aims at minimizing the

intra-cluster sum of squares, by using the proximity of

objects to the medoids of the clusters formed by the

algorithm. Note that the medoid of a set is the object

from the set itself, that minimizes the sum of the

squares (same objective as Equation 2, with the

additional condition that �̅� ∈ 𝑫). K-medoid thus does

not use any average object.

And finally, two methods which instantiate our averaging-

based condensing framework:

 K-Means: Similar to K-medoids, this well-known

method aims at minimizing the intra-cluster sum of

squares. The clusters are formed by using the

proximity of objects to the average objects (or

centroids) of the different clusters. We use DBA to

perform averaging.

 AHC with Ward’s criterion: Starting with every

object in its own cluster, agglomerative hierarchical

clustering (AHC) progressively merges the most

similar clusters until all the objects are part of the same

cluster. Similar to K-means and K-medoids in its

objective, the Ward’s criterion ranks the pairs of

clusters with regard to the increase in the weighted

intra-cluster sum of squares. Here again we use DBA

to perform averaging.

We consider situations where we can only visit a small

handful of exemplars, as few as just one per class, as this is

the defining characteristic of our problem setting. In any

case, we expect (and empirically demonstrate) that all

algorithms converge as we allow the size of the reduced

dataset used to increase. That is to say, if we randomly

sample as many time series as there are in the training set,

we actually obtain the full training set, which is logically

equivalent to the 1-NN classifier. The behavior is similar

for the other techniques: the reduced sets of time series all

tend to the initial training set as their sizes increase.

Our experiments are divided into three parts:

A. We begin with a case study, to ground the utility of our

ideas in the real world.

B. Having shown that average-based methods outperform

sampling-based ones on our case study, we further

assess the performance of the different methods on a

full-scale experiment with 42 datasets. We demonstrate

the clear superiority of average-based methods for

condensing the model of the class into a handful of

exemplars.

C. We show that not only do average-based methods

provide better solutions than the state of the art for

reducing the size of the training set, but also that they

8

make it possible to improve on the classification

accuracy, compared to the full 1-NN classifier.

Note that the runtimes for the classification phase are

directly proportional to the number of prototypes that are

used, because the similarity measure is the same and has

constant complexity with regard to the length. This means

that for a given dataset, and a given number of prototypes

per class, the classification time should be exactly the same

regardless of the algorithm. Moreover, as explained in the

problem statement, we are not interested in the training

time.

A. Case Study in Insect Surveillance

Recent work has shown that it is possible to classify

flying insects with high accuracy by converting the audio

of their flight (i.e. the familiar “buzz” of bees) to an

amplitude spectrum [37], which, as shown in Figure 7 can

essentially be considered a “time series”.

Figure 7: An audio snippet of an insect flight sound (top) can be converted

into a pseudo time series (bottom) and used to allow classification

All previous work on insect classification had assumed

that a single feature extracted from the amplitude spectrum,

the wingbeat frequency, was the only useful feature in the

amplitude spectrum. However [37] forcefully demonstrates

that using the entire spectrum, and treating the problem as a

time series classification problem, significantly reduces the

error rate. In retrospect this is not surprising. A G note on a

piano and an open string G note on a guitar have the same

frequency of 196Hz (about the same frequency as a honey

bee), but are easy to tell apart.

The ability to automatically classify insects has

potential implications for agricultural and human health, as

many plant/human diseases are vectored by insects. The

promising results presented in [37] are demonstrated in the

laboratory setting, and exploit large training datasets to

archive high accuracy. However, field deployments must

necessarily be on inexpensive resource-constrained

hardware, which may not have the ability to allow nearest-

neighbor search on large training datasets, up to hundreds

of times a second. Thus we see this situation as an ideal

application for our work.

We recorded the flying sound of male and female

insects of the species Culex stigmatosoma, which is a

vector of several diseases such as the West Nile Virus and

Western Equine Encephalitis [38]. Being able to classify

male vs. female mosquitoes is important because only the

females actually spread disease, and different interventions

are used to control females (to reduce biting now) and

males (to reduce biting one generation hence).

Using our pseudo-acoustic sensor [31], we recorded

about 10,000 flights and created a dataset by randomly

choosing 200 examples of each class (male/female). We

then randomly split this dataset into two balanced train/test

datasets of same size.

As we can see in Figure 8, our algorithm is able to

achieve a lower error-rate using just two items per class,

than by using the entire training dataset. This is an

astonishing result. The curves for the other approaches are

more typical for data condensing techniques [3,35], where

we expect to pay a cost (in accuracy) for the gains in speed.

The error rate for our approach is minimized at 19 items

per class, suggesting we can benefit for some diversity in

the training data. This diversity probably reflects the

diversity of temperatures, as we record 24 hours a day over

several days. However even if we kept just one pair of

exemplars from each class, we would have an error-rate of

just 0.13, which is still better than using all the data. These

results are significant in this domain, where a low powered

device may have to classify up to hundreds insects per

second with limited computational resources.

Figure 8: (best viewed in color) The error rate of various data condensing

techniques for every output training size from 1 per class to 100 per class.

The curves are slightly smoothed for visual clarity; the raw data
spreadsheets are available at [15].

We now proceed with the rest of the experiments, in

order to assess the generality of the two observations that

we have made on this case study:

1. The average-based methods condense better the

information about the class than the state-of-the-

art methods (detailed in the next sub-section: B).

2. Not only are average-based methods better at

reducing the size of the training set, but they can

also improve the accuracy of the classifier. This

8000 12000 16000

A mosquito flying

past the sensor

Background noise

400 800 12000

Wingbeat

frequency

at 354Hz
Harmonics

Single-Sided Amplitude Spectrum

0 20 40 60 80 1000

Kmeans

0.1

0.2

0.3

AHC

Drop2
KMEDOIDS

Drop3

random

Drop1

SR

E
rr

o
r-

R
a
te

The minimum error-rate
is 0.092, with 19 pairs

of objects

The full dataset error-
rate is 0.14, with 100

pairs of objects

Items per class in reduced training set

9

has been observed in Figure 8 where reducing the

training set with the K-means algorithm allows us

to derive a classifier that performs better than 1-

NN using the full training set (error rate of 0.092

vs 0.14). This observation will be assessed in sub-

section C.

Finally, note that all the raw material generated by our

experiments (for example, the charts similar to Figure 8 for

all the datasets, but also the rankings used in the reminder

of this section) cannot be completely included in the paper

due to space limitations; we provide detailed results for 3

more representative examples in Appendix C; other results

are available at [15].

B. Condensing the model of the class to a handful of

exemplars

To demonstrate that the results in the case study

represent typical improvements over the rival methods, we

will test on a very diverse collection of datasets. We have

compared our approach on all the datasets in the UCR time

series archive [27]4. A description of a representative

sample of these datasets is given in TABLE III.

TABLE III: PRESENTATION OF A SAMPLE OF THE DATASETS USED

Name Length Size train/test # classes

Gun-Point 150 50/150 2

Swedish Leaf 128 500/625 15

TwoPatterns 128 1,000/5,000 4

FaceAll 131 560/1,690 14

Coffee 286 28/28 2

Haptics 1,092 155/308 5

Inline Skate 1,882 100/550 7

WordsSyn. 270 267/638 25

We want to compare the performance of the different

methods when they are authorized (under the “contract”) to

use, say, 1 prototype per class (or #𝑐𝑙𝑎𝑠𝑠𝑒𝑠 prototypes for

Random, DropX and SimpleRank). To this end, we follow

the standard practices for the statistical comparison of

classifiers [16] and use the average ranking of each method

over all the datasets. This will allow us to assess what

algorithm exhibits, on average, the best classification

performances under the contract restriction.

For every dataset and every algorithm, we compute the

error-rate when constrained to use a reduced set of 𝑘

prototypes per class only. Then, for every dataset, we rank

the methods by error-rates: rank 1 is assigned to the best

method; rank 8 is assigned to the worst one.5

4 We use 42 datasets, i.e. all but two of the datasets of the archive;

we have excluded the StarLightCurve and FetalECG for

computational reasons.
5 In case of ties, we assign the average (or fractional) ranking. For

example, if there is one winner, two seconds and a loser

[1,2,2,4], then the fractional ranking will be [1,2.5,2.5,4].

We then compute the average rank for every method

(see [34 – Section 3.2.2]). Let 𝑟𝑖
𝑗
 be the rank of the 𝑗𝑡ℎ of 𝐴

algorithms on the 𝑖𝑡ℎ of 𝑁𝑑 datasets. The average rank for

algorithm 𝑗 is computed as 𝑅𝑗 =
1

𝑁𝑑
∑ 𝑟𝑖

𝑗
𝑖 .

This gives a direct general assessment of all the

algorithms: the lowest rank corresponds to the method that,

on average, obtains the lowest error-rate for the considered

“contract”.

TABLE IV shows the average rank of all algorithms over

the datasets of [27] (again, the raw results giving the error

rate and rank for every method and every dataset is

available at [15]). These results show unanimously that the

methods that use an average sequence (K-means and AHC)

significantly outperform the prior state of the art.

TABLE IV: AVERAGE RANKING OF THE CONDENSING METHODS FOR 1 TO 5

PROTOTYPES PER CLASS

Algorithm Average rank 𝑹𝒋 using 𝑘 prototypes per

class (or equivalent)

𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5

Random 4.70 5.06 4.81 5.46 5.01

Drop1 6.38 3.32 6.13 5.71 5.63

Drop2 5.37 5.37 5.32 5.14 5.20

Drop3 6.37 6.62 6.68 6.56 6.80

Simple rank 5.23 5.35 5.42 5.02 5.14

K-medoids 3.67 3.45 3.71 3.82 3.81

K-means 2.14 1.96 2.13 2.13 2.36

AHC 2.14 1.92 1.98 2.08 2.13

𝜒𝐹
2 141 166 149 135 128

Rmed-𝑅𝑚𝑒𝑎𝑛 1.52 1.49 1.58 1.69 1.45

We first perform a Friedman test [16], in order to assess

if the results are significantly different. This test is used to

evaluate whether there is enough evidence to confidently

state that the different methods have different mean ranks

[16, Section 3.2.2]:

𝜒𝐹
2 =

12𝑁𝑑

𝐴(𝐴 + 1)
[∑ 𝑅𝑗

2 −
𝐴(𝐴 + 1)2

4
𝑗

] (3)

where 𝑁𝑑 is the number of datasets and 𝐴 is the number of

algorithms compared. The values are reported in the

second-to-last line of TABLE IV; given that the Friedman

test follows a 𝜒2 distribution with 𝐴 − 1 degrees of

freedom, these results yield a highly significant difference

between the methods (𝑝 < 10−16).

Having rejected the null hypothesis, we can proceed

with a detailed comparison of the methods. Again, we

follow standard practices for classifier comparison [16] and

perform a two-tailed Bonferronni-Dunn test to compare

pairs of methods. Our aim is to show that using the average

yields better performance for time series classification than

alternative approaches to contract time series classification,

rather than trying to establish the prevalence of any

10

algorithm in particular. To this end, we compare K-means

to K-medoids. This pair of methods constitutes an excellent

test-bed, because K-medoids appears to be the best

performing method in the group of methods that do not use

the average time series, while K-means appears to be the

“worst” performing method in the group of methods that do

use the average time series. In addition, these two methods

are functionally comparable, because they have the same

objective function to minimize the intra-cluster sum of

squares. In this way, we are comparing the methods in the

least advantageous way for averaging-based methods, in

order to be extra-conservative in the assessment of average-

based methods vs. state-of-the-art methods. Comparing 8

methods over 42 datasets, [16] shows that, to be

statistically significant (𝛼 = 0.05) the critical difference

(CD) between the average rankings has to be greater than:

CD = 𝑞0.05 ⋅ √
𝐴(𝐴+1)

6𝑁𝑑
= 2.690 ⋅ √

72

252
≈ 1.438.

We report the difference between the average rank

obtained by K-medoids and the one obtained by K-means

over the 42 datasets in the last line of TABLE IV. It shows

that the difference is greater than the critical one CD,

regardless of the number of prototypes used. As a result, we

can confidently conclude that the K-means algorithm is

statistically significantly better than K-medoids, and thus

that the use of averaging-based methods yield better results

than state-of-the-art methods.

C. Classifying faster and more accurately

We have seen in the case study on insect surveillance

that average-based methods manage, with a reduced set of

time series, to outperform the classification accuracy of the

1-NN classifier on the full training set. This result may be

counterintuitive, so in this section we will assess this

phenomenon on a wide variety of datasets.

To this end, we start by performing a standard 1-NN

classifier using the full training set for classification. This

gives us the reference error-rate against which we compare

the results of different methods. We then progressively

restrict the allowed size of the reduced set (𝑘), until we find

the smallest value of 𝑘 for which the error-rate is smaller

than the full 1-NN algorithm.

Then, for each dataset (and similar to the experiment in

the last section), we rank the methods by size of their

reduced sets that are able to “beat” the full 1-NN classifier.

The results of these experiments are reported in TABLE V;

note that for fairness in the ranking, we do not include the

Random sampling strategy because, on average, it cannot

beat the results of the full 1-NN classifier.

A first look at TABLE V shows that average-based

methods again outperform the prior state of the art, with the

K-means algorithm obtaining an average rank of 1.57 better

than the K-medoids algorithm. Moreover, on average, the

K-means method is able to condense the training set by

71%. This means that on average over the archive of

datasets, our method using the K-means algorithm achieves

equal or better performance that the full 1-NN classifier,

while only requiring 29% of the computational complexity.

Again, this is an extraordinary result.

TABLE V: AVERAGE RANKING OF THE CONDENSING METHODS ON THE SIZE

OF THE DATASET REQUIRED TO BEAT THE FULL 1-NN CLASSIFIER

Algorithm Average

rank

𝑹𝒋

Average size of

the reduced set

(in % of the

training set)

Drop1 5.89 86%

Drop2 5.07 76%

Drop3 5.45 80%

Simple rank 4.31 69%

K-medoids 3.41 52%

K-means 1.84 29%

AHC 2.73 39%

We can now assess the statistical significance of the

superiority of K-means over K-medoids (the best method

that does not average time series).

Similar to the last sub-section, we start by computing a

Friedman test over the ranking presented in the first column

of TABLE V, which yields a highly significant difference

between the methods (𝜒𝐹
2 > 173 which gives 𝑝 < 10−18).

We can thus proceed with a detailed assessment of the

performance of K-means versus the reference K-medoids.

The critical difference (CD) for this experiment is:

 CD = 𝑞0.05 ⋅ √
𝐴(𝐴+1)

6𝑁𝑑
= 2.638 ⋅ √

56

252
≈ 1.244.

Moreover, we have:

RKMedoids − RKMeans ≈ 1.571 > 1.244

As this difference is far greater than the critical value,

we can conclude confidently that the K-means algorithm

requires significantly fewer prototypes than the K-medoids

algorithm to “beat” the full 1-NN classifier.

VII. DISCUSSION: WHY CAN WE GET BETTER RESULTS?

We have seen that our approach can provide more

accurate predictions for several domains. We wish to

complete the intuition that we provided at the start of the

paper, with a few elements that can explain this

improvement, not only in the speed of the classification,

but also in terms of accuracy. We posit that two conjugate

elements are responsible for the potential gain in accuracy:

1. Most datasets contain subclasses. Our condensing

approach acts as a clustering of the data, which

makes it possible to create different sub-models for

the different subclasses. Such sub-classes are

present in many applications, as it is for example the

case for the Gun Point dataset, where each class has

11

recordings associated with people of different

heights.

2. NCC has a lower variance than NN. NN can

represent much more complex decision boundaries.

This greater power comes at the cost of greater

capacity to overfit the data. Intuitively, in our

example in Figure 2, when choosing the NCC

classifier, we are forcing the decision boundary to

be a straight line, while the NN's boundary can be a

broken-line of high-complexity. This means that for

NCC, we only have to estimate two parameters (the

equation of the line) with 𝑛 samples, which leads to

a much lower variance than for NN.

VIII. CONCLUSIONS AND FUTURE WORK

We have shown that an obscure result on averaging

“warped” time series can be augmented to allow us to

create much faster and/or more accurate time series

classifiers. Our results may be particularly useful for

resource constrained situations, such as wearable devices

and “in-sensor” classifiers [36]. We have demonstrated the

utility of our approach and ideas on more than 40 datasets,

and made all code and data freely available to allow

independent confirmation and extensions of our work [16].

Note that the classic data condensing methods such as

Drop{X} occasionally do reasonably well, at least at some

levels of condensation. Further note that the only operator

in their search space, the deletion of items, is completely

orthogonal to our proposed methods. This suggests that we

may be able to further improve our search space by

expanding our search space to include deletion. We

propose to consider this avenue in future work.

ACKNOWLEDGMENT

This research was supported by the ARC DP120100553
and DP140100087, the NSF IIS-1161997, the Bill and
Melinda Gates Foundation, Vodafone's Wireless Innovation
Project, the French-Australia Science Innovation
Collaboration Grants PHC Grant #32571NA and by the Air
Force Office of Scientific Research, Asian Office of
Aerospace Research under contracts FA2386-15-1-4017 and
FA2386-15-1-4007.

REFERENCES

[1] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and

E. Keogh, “Experimental comparison of representation methods and
distance measures for time series data,” Data Mining and Knowledge

Discovery, vol. 26, no. 2, pp. 275–309, 2013.

[2] A. Bagnall and J. Lines, “An experimental evaluation of nearest
neighbour time series classification. technical report #CMP-C14-

01,” Department of Computing Sciences, University of East Anglia,

Tech. Rep., 2014.

[3] X. Xi, E. Keogh, C. Shelton, L. Wei, and C. A. Ratanamahatana,

“Fast time series classification using numerosity reduction,” in Int.

Conf. on Machine Learning, 2006, pp. 1033–1040.

[4] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover,

Q. Zhu, J. Zakaria, and E. Keogh, “Searching and mining trillions of

time series subsequences under dynamic time warping,” in Int. Conf.

on Knowledge Discovery and Data Mining, 2012, pp. 262–270.

[5] I. Assent, M. Wichterich, R. Krieger, H. Kremer, and T. Seidl,

“Anticipatory DTW for efficient similarity search in time series

databases,” Proceedings of the VLDB Endowment, vol. 2, no. 1, pp.
826–837, 2009.

[6] H. Kremer, S. Günnemann, A.-M. Ivanescu, I. Assent, and T. Seidl,

“Efficient processing of multiple DTW queries in time series
databases,” in Scientific and Statistical Database Management.

Springer, 2011, pp. 150–167.

[7] D. E. Zhuang, G. C. Li, and A. K. Wong, “Discovery of temporal
associations in multivariate time series,” IEEE Transactions on

Knowledge and Data Engineering, 2014.

[8] F. Petitjean, A. Ketterlin, and P. Gançarski, “A global averaging
method for dynamic time warping, with applications to clustering,”

Pattern Recognition, vol. 44, no. 3, pp. 678–693, 2011.

[9] F. Petitjean, G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen and
E. Keogh, “Dynamic Time Warping Averaging of Time Series

allows Faster and more Accurate Classification,” in Int. Conf. on

Data Mining, IEEE, 2014, pp. 470–479.

[10] F. Galton, “Vox populi,” Nature, vol. 75, no. 1949, pp. 450–451,

1907.

[11] R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu, “Diagnosis of
multiple cancer types by shrunken centroids of gene expression,”

National Academy of Sciences, vol. 99, no. 10, pp. 6567–6572, 2002.

[12] J. Gou, Z. Yi, L. Du, and T. Xiong, “A local mean-based k-nearest
centroid neighbor classifier,” The Computer Journal, vol. 55, no. 9,

pp. 1058–1071, 2012.

[13] P.E. Hart, “The condensed nearest neighbor rule,” IEEE

Transactions on Information Theory, vol. 14, no °3, PP.515-516,

1968.

[14] X. Xi, K. Ueno, E. Keogh, and D.-J. Lee, “Converting non-

parametric distance-based classification to anytime algorithms,”

Pattern Analysis and Applications, vol. 11, no. 3-4, pp. 321–336,
2008.

[15] “Additional material,” http://www.tiny-

clues.eu/Research/ICDM2014-DTW/index.php.

[16] J. Demšar, “Statistical comparisons of classifiers over multiple data

sets,” The Journal of Machine Learning Research, vol. 7, pp. 1–30,

2006.

[17] D. Ariely, “Seeing sets: Representation by statistical properties,”

Psychological Science, vol. 12, no. 2, pp. 157–162, 2001.

[18] G. A. Alvarez, “Representing multiple objects as an ensemble
enhances visual cognition,” Trends in cognitive sciences, vol. 15,

no. 3, pp. 122–131, 2011.

[19] R. Jenkins and A. Burton, “100% accuracy in automatic face
recognition,” Science, vol. 319, no. 5862, pp. 435–435, 2008.

[20] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer

Science and Computational Biology, Cambridge University Press,
1997, ch. 14 Multiple String Comparison – The Holy Grail, pp. 332–

367.

[21] L. Wang and T. Jiang, “On the complexity of multiple sequence
alignment,” Journal of Computational Biology, vol. 1, no. 4, pp.

337–348, 1994.

[22] L. Gupta, D. L. Molfese, R. Tammana, and P. G. Simos, “Nonlinear
alignment and averaging for estimating the evoked potential,” IEEE

Transactions on Biomedical Engineering, vol. 43, no. 4, pp. 348–

356, 1996.
[23] K. Wang, T. Gasser et al., “Alignment of curves by dynamic time

warping,” The Annals of Statistics, vol. 25, no. 3, pp. 1251–1276,

1997.
[24] V. Niennattrakul and C. A. Ratanamahatana, “Shape averaging

under time warping,” in Int. Conf. on Electrical

Engineering/Electronics, Computer, Telecommunications and
Information Technology, IEEE, vol. 2, 2009, pp. 626–629.

http://www.tiny-clues.eu/Research/ICDM2014-DTW/index.php
http://www.tiny-clues.eu/Research/ICDM2014-DTW/index.php

12

[25] S. Ongwattanakul and D. Srisai, “Contrast enhanced dynamic time

warping distance for time series shape averaging classification,” in
Int. Conf. on Interaction Sciences: Information Technology, Culture

and Human, ACM, 2009, pp. 976–981.

[26] D.-F. Feng and R. F. Doolittle, “Progressive sequence alignment as a
prerequisite to correct phylogenetic trees,” Journal of Molecular

Evolution, vol. 25, no. 4, pp. 351–360, 1987.

[27] E. Keogh, X. Xi, L. Wei, and C. A. Ratanamahatana, “The UCR
time series classification/clustering homepage,”

http://www.cs.ucr.edu/~eamonn/time_series_data/, 2011.

[28] F. Petitjean and P. Gançarski, “Summarizing a set of time series by
averaging: From steiner sequence to compact multiple alignment,”

Theoretical Computer Science, vol. 414, no. 1, pp. 76–91, 2012.

[29] F. Petitjean, J. Inglada and P. Gançarski, “Satellite Image Time
Series Analysis under Time Warping,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 50, no. 8, pp. 3081-3095,

2012.
[30] F. Petitjean, “Matlab and Java source code for DBA,”

doi:10.5281/zenodo.10432, 2014.

[31] P. Kranen and T. Seidl, “Harnessing the strengths of anytime
algorithms for constant data streams,” Data Mining and Knowledge

Discovery, vol. 19, no. 2, pp. 245–260, 2009.

[32] B. Hu, T. Rakthanmanon, Y. Hao, S. Evans, S. Lonardi, and
E. Keogh, “Discovering the intrinsic cardinality and dimensionality

of time series using MDL,” in Int. Conf. on Data Mining, IEEE,

2011, pp. 1086–1091.

[33] C. A. Ratanamahatana and E. Keogh, “Three myths about dynamic

time warping data mining,” in SIAM Int. Conf. on Data Mining,
2005, pp. 506–510.

[34] V. Niennattrakul and C. A. Ratanamahatana, “Inaccuracies of shape

averaging method using dynamic time warping for time series data,”
in Int. Conf. on Computational Science. Springer, 2007, pp. 513–

520.

[35] E. Pekalska, R. P. Duin, and P. Paclìk, “Prototype selection for
dissimilarity-based classifiers,” Pattern Recognition, vol. 39, no. 2,

pp. 189–208, 2006.

[36] K. Ueno, X. Xi, E. Keogh, and D.-J. Lee, “Anytime classification
using the nearest neighbor algorithm with applications to stream

mining,” in Int. Conf. on Data Mining, IEEE, 2006, pp. 623–632.

[37] Y. Chen, A. Why, G. Batista, A. Mafra-Neto, and E. Keogh, “Flying
insect classification with inexpensive sensors,” Journal of Insect

Behavior, vol. 27, no. 5, pp. 657-677, 2014.

[38] L. B. Goddard, A. E. Roth, W. K. Reisen, T. W. Scott et al., “Vector
competence of California mosquitoes for west Nile virus,” Emerging

infectious diseases, vol. 8, no. 12, pp. 1385–1391, 2002.

[39] Y. Yang, G.I. Webb, K. Korb, and K-M. Ting, “Classifying under

Computational Resource Constraints: Anytime Classification Using

Probabilistic Estimators,” Machine Learning, vol. 69, no. 1, 2007

APPENDIX A. PROOF OF CONVERGENCE OF DBA

We want to prove that, at each iteration, DBA provides a

better average sequence �̅�, i.e. has a lower sum of squares

(Equation 2). DTW guarantees to find the minimum

alignment between two sequences, which proves optimality

for the first step of DBA (Table I - Algorithm 2 – lines 1 –

8). Proving convergence thus requires showing that for a

given multiple alignmen t𝑀, the computed �̅� is optimal.

Let 𝑀 = 𝐷𝑇𝑊_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒_𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡(�̅�, 𝑫) (Table I –

Algorithm 3) and 𝑀ℓ = 𝑀[ℓ]. We start by rewriting the

objective function (sum of squares – SS):

SS(�̅�, 𝑫) = ∑ DTW2(�̅�, 𝑇𝑖)

𝑁

𝑖=0

= ∑ ∑ (�̅�(ℓ) − 𝑒)2

𝑒∈𝑀ℓ

𝐿

ℓ=1

 (4)

where 𝑒 is an element of a sequence of 𝑫 that has been

“linked” to the ℓ𝑡ℎ element of �̅� by Dynamic Time

Warping. Given that this function has no maximum, it is

minimized when its partial derivative is 0:

 𝜕SS(�̅�, 𝑫)

𝜕�̅�(ℓ)
 = 0

⇒ ∑ 2 ⋅ (�̅�(ℓ) − 𝑒)

𝑒∈𝑀ℓ

 = 0

⇒ �̅�(ℓ) =
1

|𝑀ℓ|
∑ 𝑒

𝑒∈𝑀ℓ

 (5)

This leads to SS(�̅�, 𝑫) being minimized when every

element ℓ of �̅� is positioned as the mean of |𝑀ℓ|. ∎

http://www.cs.ucr.edu/~eamonn/time_series_data/

13

APPENDIX B. QUANTITATIVE EVALUATION OF DBA

TABLE 6: COMPARISON OF INTRA-CLASS SUM OF SQUARES FOR DYNAMIC

TIME WARPING (AS PER EQUATION 2)

Dataset Intra-class sum of squares

Medoid EUC DBA

50words 64,451 21,635 9,315

Adiac 376 438 202

Beef 12.6 13.3 4

CBF 33,836 14,738 12,654

ChlorineConcentration 76,983 82,174 62,796

CinC_ECG_torso 1,844,018 653,815 145,813

Coffee 55,177 53,930 28,916

Cricket_X 173,688 111,498 42,149

Cricket_Y 165,918 91,182 38,534

Cricket_Z 171,884 110,940 41,900

DiatomSizeReduction 644 513 468

ECG200 2,405 1,857 1,509

ECGFiveDays 25,876 7,546 5,919

FaceAll 93,441 41,152 32,818

FaceFour 8,963 4,907 2,974

FacesUCR 103,560 48,063 37,916

FISH 1,048 697 510

Gun_Point 1,558 1,843 479

Haptics 27,469 9,376 6,474

InlineSkate 203,280 94,621 16,779

ItalyPowerDemand 2,930 2,825 2,470

Lighting2 25,172 13,811 9,308

Lighting7 12,444 7,764 5,066

MALLAT 15,924 13,154 6,860

MedicalImages 20,997 16,451 10,767

MoteStrain 31,594 29,344 23,751

OliveOil 0.17 0.20 0.10

OSULeaf 84,824 25,376 10,929

SonyAIBORobotSurface 5,419 5,102 4,165

SonyAIBORobotSurfaceII 18,747 14,096 11,637

StarLightCurves 891,254 659,048 134,463

Stig 129,079 79,955 20,025

SwedishLeaf 8,959 4,045 2,875

Symbols 29,905 11,223 6,224

synthetic_control 13,899 6,564 5,472

Trace 18,157 21,172 3,294

TwoLeadECG 2,516 1,644 1,481

Two_Patterns 534,606 72,145 53,696

uWaveGestureLibrary_X 637,481 385,641 121,159

uWaveGestureLibrary_Y 617,871 443,306 108,913

uWaveGestureLibrary_Z 685,485 423,927 127,617

Wafer 670,529 522,476 253,702

WordsSynonyms 84,584 29,555 11,052

Yoga 372,221 118,981 41,132

APPENDIX C. REPRESENTATIVE SAMPLES OF THE FULL

SET OF RESULTS AVAILABLE AT [33]

(a) ECG 200

(b) Gun point

(c) uWaveGestureLibrary

Figure 9: (best viewed in color) The error rate (with standard deviation) of

various data condensing techniques for every output training size from 1
per class to 100 per class. The curves are slightly smoothed for visual

clarity; the raw data spreadsheets are available at [33].

Figure 9(a) presents the results on the

electrocardiograms time series dataset (ECG 200) which

show the electrical potential between two points on the

surface of the body caused by a beating heart [27]. In this

dataset, the proposed condensing methods that make use of

the average (KMeans and AHC) outperform all other

methods. Similarly, as in our example for insect

surveillance (Figure 8), a better overall accuracy can be

reached while using a subset of prototypes instead of using

the entire training set. The technique based on AHC

14

reaches an error-rate of 14% with only 16 prototypes per

class, while the full 1-NN algorithm requires more than 50

prototypes per class to obtain a 23% error-rate.

Figure 9(b) presents the results on the Gun/NoGun

motion capture time series dataset. Here again, our average-

based condensing techniques dominate state-of-the-art

methods. It is interesting to observe the important reduction

of the error-rate with 2 to 5 items per class. This can be

explained by the multimodality of the two classes of the

dataset, which has been created from recording of

movements of people with different heights.

Figure 9(c) presents the results on the

uWaveGestureLibrary(Z) time series dataset which

contains over 4000 samples of accelerometer readings for

gesture recognition. This example shows that one prototype

per class makes it possible to “explain” most of the

variance in the classes of the dataset. This is another critical

example, because gesture recognition systems not only

have to be reliable, but also often must perform the

recognition very quickly. With one prototype per class on

this dataset that is composed of more than 100 training time

series for each class, our condensing technique offers a

100-fold speedup, with a loss in the recovery of only 5%.

This starkly contrasts with a condensing using the best non-

average-based method (K-medoids), for which the error-

rate increases by 14% for the same speedup.

BIOGRAPHIES

François Petitjean is a Researcher at the

Center for Data Science at Monash

University. His research area include data

mining and machine learning, and focuses

on the analysis of large and high-

dimensional data. He obtained his PhD in

2012 working for the French Space

Agency and then joined Geoff Webb’s machine learning

team at Monash University.

Germain Forestier obtained the MSc

and PhD in Computer Science from the

Université de Strasbourg, France, in 2007

and 2010. He was a post-doctoral fellow

at INRIA Rennes, France, between 2010

and 2011. He is now an associate

professor at Université de Haute-Alsace,

France and a member of the MIPS laboratory. His scientific

interests include data mining, knowledge and data

engineering, semantic web and image processing.

Geoff Webb is Director of the Monash

University Center for Data Science. He

was editor in chief of Data Mining and

Knowledge Discovery from 2005 to 2014.

He has been Program Committee Chair of

both ACM SIGKDD and IEEE ICDM, as

well as General Chair of ICDM. He is a

Technical Advisor to BigML Inc, who are

incorporating his best of class association discovery

software, Magnum Opus, into their cloud based Machine

Learning service. He developed many of the key

mechanisms of support-confidence association discovery in

the 1980s. His OPUS search algorithm remains the state-

of-the-art in rule search. He pioneered multiple research

areas as diverse as black-box user modelling, interactive

data analytics and statistically-sound pattern discovery. He

has developed many useful machine learning algorithms

that are widely deployed. He received the 2013 IEEE

Outstanding Service Award, a 2014 Australian Research

Council Discovery Outstanding Researcher Award and is

an IEEE Fellow.

Professor Ann Nicholson is the Associate

Dean Education in the Faculty of

Information Technology. After

completing her BSc (Hons) and MSc in

Computer Science at the University of

Melbourne, she completed her doctorate

at the University of Oxford in the Robotics Research Group

. Ann has worked on many areas within Artificial

Intelligence, including probabilistic planning, user

modelling and robotics. Her primary research focus is on

probabilistic graphical models, specifically Bayesian

15

networks. Her research includes approximate inference

algorithms, causal discovery and elicitation methodologies,

and has a strong cross-disciplinary focus, applying

Bayesian networks in many domains including

meteorology, epidemiology, medicine, education and

environmental science.

Yanping Chen is a PhD student of

computer science at the University of

California Riverside. Her research

focused on data mining, machine learning

and the applications of these techniques to

time series data analysis. She has three

papers published in SIGKDD, two in

ICDM and one in SDM. She is also doing research on

insect detection and classification. Her research in insect

study has attracted great attentions from industry, research

institutions and popular media.

Eamonn Keogh is a professor of

computer science at the University of

California Riverside. His research areas

include data mining, machine learning

and information retrieval, specializing in

techniques for solving similarity and

indexing problems in time-series datasets. He has authored

more than 200 papers. He received the IEEE ICDM 2007

best paper award, SIGMOD 2001 best paper award, and

best paper award in SIGKDD 2012. He has given over two

dozen well received tutorials in the premier conferences in

data mining and databases.

