
 

1 

Faster and More Accurate Classification of Time Series by Exploiting a Novel 

Dynamic Time Warping Averaging Algorithm 
François Petitjean

1
, Germain Forestier

2
, Geoffrey I. Webb

1
, 

 Ann E. Nicholson
1
, Yanping Chen

3
 and Eamonn Keogh

3 

 
1 
Faculty of IT, Monash University, Melbourne, Australia, firstname.lastname@monash.edu 

2
 MIPS (EA 2332), Université de Haute Alsace, Mulhouse, France, germain.forestier@uha.fr 

3
 Computer Science and Engineering Dpt, University of California, Riverside, USA {ychen053,eamonn}@cs.ucr.edu 

 
Abstract—A concerted research effort over the past two 

decades has heralded significant improvements in both the 

efficiency and effectiveness of time series classification. The 

consensus that has emerged in the community is that the best 

solution is a surprisingly simple one. In virtually all domains, 

the most accurate classifier is the Nearest Neighbor algorithm 

with Dynamic Time Warping as the distance measure. The 

time-complexity of Dynamic Time Warping means that 

successful deployments on resource constrained devices 

remain elusive. Moreover, the recent explosion of interest in 

wearable computing devices, which typically have limited 

computational resources, has greatly increased the need for 

very efficient classification algorithms. A classic technique to 

obtain the benefits of the Nearest Neighbor algorithm, without 

inheriting its undesirable time and space complexity, is to use 

the Nearest Centroid algorithm. Unfortunately, the unique 

properties of (most) time series data mean that the centroid 

typically does not resemble any of the instances, an unintuitive 

and underappreciated fact. In this paper we demonstrate that 

we can exploit a recent result by Petitjean et al. to allow 

meaningful averaging of “warped” time series, which then 

allows us to create super-efficient Nearest “Centroid” 

classifiers that are at least as accurate as their more 

computationally challenged Nearest Neighbor relatives. We 

demonstrate empirically the utility of our approach by 

comparing it to all the appropriate strawmen algorithms on 

the ubiquitous UCR Benchmarks, and with a case study in 

supporting insect classification on resource constrained 

sensors. 

Keywords—time series, averaging, dynamic time warping, 

classification, data mining 

I. INTRODUCTION 

The last decade has seen increasing acceptance that the 

Nearest Neighbor (NN) algorithm with Dynamic Time 

Warping (DTW) as the distance measure is the technique of 

choice for most time series classification problems. The 

NN-DTW algorithm has been shown to be competitive or 

superior in domains as diverse as pen-based computing, 

gesture recognition, robotics and ECG classification. 

Moreover recent comprehensive studies have strongly 

validated this idea: 

• In a near exhaustive empirical study in [1] the 

authors compared NN-DTW to nearly all of the most 

highly cited distance measures in the literature on dozens of 

datasets. They found that no distance measure consistently 

beats DTW, but DTW almost always outperforms most 

methods that were originally touted as superior, based on 

less complete empirical evaluations.  

• In [2] (and to a lesser extent [3]) the authors 

examine the assumption that the Nearest Neighbor 

classifier is the best technique and consider other 

classifiers, including kernel methods, neural networks and 

decision trees. Once again, the evidence strongly suggests 

that the structure of time series (autocorrelated values, high 

apparent but low intrinsic dimensionality) lends itself to the 

Nearest Neighbor algorithm and to NN-DTW in particular. 

Because of these findings, most recent research has 

simply assumed the utility of NN-DTW and concentrated 

on mitigating the oft-lamented drawback of DTW: its time 

complexity. There has also been recent significant progress 

on this, such as Rakthanmanon et al.’s result showing that, 

under reasonable constraints, nearest neighbor queries 

under DTW can be answered in time that is no worse than 

twice that of the Euclidean distance [4].  

Nevertheless there are still situations where DTW (or for 

that matter, Euclidean distance) has severe tractability 

issues. While the accuracy of NN is a function of the size 

of the training set, unlike eager learners, the classification 

time is also a function of it. Thus, to obtain a required level 

of accuracy, it may be necessary to compare the incoming 

exemplar to dozens or hundreds of training objects. While 

optimizations such as those in [4-6] can mitigate somewhat 

the time needed, NN-DTW may still be intractable in some 

situations. This is especially true for resource constrained 

devices such as wearable computers and embedded medical 

devices. 

One obvious fix is to reduce the size of the training set to 

the largest size that can be searched at each time interval. 

Xi et al. [3] showed that by adapting classic data editing 

techniques it is possible to create a “smart” subset that has 

an error-rate as low as a much larger random subset. 

Nevertheless, this result only partly mitigates the problem.  

The Nearest Centroid Classifier (NCC) is an apparent 

solution to this problem. NCC allows us to leverage the 

strengths of the NN algorithm, while avoiding its 

substantial space and time requirements. Unfortunately, the 

centroid is defined only for simple metrics, which DTW is 

not. This is not a trivial semantic point. As Figure 1 shows, 

even if we consider only instances that have a very low 

mutual DTW distance, if we attempt standard Euclidean 

averaging, the resultant centroid will typically resemble 

none of the parent objects.  
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The contributions of this paper are as follows:  

1. We leverage off and extend a little known recent 

result that allows us to meaningfully define 

“centroid” under DTW [8].  

2. We show how to use this result to condense large 

datasets into much smaller (as small as a single 

instance per class) datasets. 

3. We demonstrate that by carefully condensing the 

dataset, we can build a classification model using 

centroids that favorably competes with the state-of-

the-art NN-DTW, but can classify time series up to 

100x faster, which makes it compatible with real-

time classification and embedded systems.  

4. We show that, in some domains, the condensed 

datasets allows us to derive a classifier with greater 

accuracy. This less intuitive result arises because the 

averaging combines evidence from all exemplars to 

produce prototypes that are more like the class’ 

Platonic ideal than any individual instance. 

The remainder of this paper is organized as follows. 

First, we review related and background work. Then in 

Section III we introduce the necessary definitions and 

formally define the problem to be solved, before presenting 

our solution in Section IV. In Section V we provide strong 

empirical validation of our claims regarding both accuracy 

and computational time, then offer conclusions and 

directions for future work in Section VI.  

Note that this paper is an extended version of our paper 

appearing in IEEE ICDM’14 as [9]. 

II. RELATED WORK AND BACKGROUND  

The idea that the mean of a set of objects may be more 

representative than any individual object from that set dates 

back at least a century to a famous observation of Francis 

Galton. Galton noted that the crowd at a county fair 

accurately guessed the weight of an ox when their 

individual guesses were averaged [10]. Galton realized that 

the average was closer to the ox's true weight than the 

estimates of most crowd members, and also much closer 

than any of the separate estimates made by cattle experts. 

This idea is frequently exploited in machine learning.  

For example the Nearest Centroid Classifier [11,12,13] 

generalizes the Nearest Neighbor classifier (NN) by 

replacing the set of neighbors with their centroid. It uses 

the center of mass of each class as the prototype against 

which every test instance is compared.  

It should be noted that there are two separate 

motivations for using the Nearest Centroid Classifier. Most 

obviously it is faster, being O(1) rather than O(n).  

Because this may be counterintuitive, we will 

demonstrate it in an intuitive setting. Consider a domain in 

which all exemplars are uniformly distributed in the unit 

square, with objects having an X-value less than 0.5 

assigned the label A, otherwise B. 

Figure 2 illustrates an example in which there are just 

three instances per class. 

For balanced dataset sizes from 2 to 4,000, we 

compared the error rates of the NN and the NCC on this 

domain, each time averaging over 1,000 runs. The results 

are shown in Figure 3; note that these results assume that 

the decision boundary is 𝑥 = 0.5, that the samples for each 

class are uniformly sampled in both half-squares, and that 

the test samples are uniformly sampled in the unit square.  

 

Even without any experiments we know that the two 

algorithms must agree on the far left side of the figure, and 

since the centroid of a single point is that point, the two 

algorithms are identical here. A little more introspection 

tells us that the algorithms will also agree on the far right 

side of the figure. What is less obvious is that the Nearest 
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Figure 1: top) Three examples of daily patterns at an oil refinery [7]. 
middle) When averaged under the Euclidean distance the resulting 

centroid has an additional peak that is in none of the original time series.  

bottom) When averaged using the DTW based method proposed in this 
work, the “centroid” is more intuitive. 
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Figure 2: A simple classification problem in which the concept is the left 

vs. right side of the unit square. This instance of the problem has three 

points per class (left). Here NN has error-rate of 12.60%, while the 
Nearest Centroid classifier (right) with the same instances achieves an 

error-rate of just 5.22%. 

Figure 3: The error rate of two algorithms, NCC (blue) and NN (red) for 
increasingly large training data sizes of the “left vs. right side of the unit 

square” problem. 
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Centroid Classifier is more accurate in between those two 

extremes. III.1. 

It is important to note that the Nearest Centroid 

Classifier is not guaranteed to be more accurate than the 

NN classifier in general. For example, consider the 

“Japanese flag” dataset (adapted from [14]) shown in 

Figure 4. Here the NN algorithm approaches zero error-rate 

for large training dataset sizes, while in contrast the Nearest 

Centroid Classifier steadfastly achieves just the default rate. 

 
Figure 4: A two-class problem in which objects within 1.2 of the origin are 

in class A, otherwise they are in class B. With enough training data the 

NN classifier can learn this concept very well; however the Nearest 
Centroid Classifier is condemned to perform at the default rate. 

In spite of the existence of such pathological cases, the 

Nearest Centroid Classifier often outperforms the NN 

algorithm on real datasets, especially if one is willing (as 

we are) to generalize it slightly; for example, by using 

clustering to allow a small number of centroids, rather than 

just one. Thus our claim is simply: 

 Sometimes NCC has similar or lower accuracy than 

NN. In such cases we prefer NCC because it is faster 

and requires less memory. 

 Sometimes NCC can be more accurate than NN. In 

such cases we prefer NCC because of the accuracy 

gains, and the reduced computational requirements 

come “for free”. 

The above discussion at first may appear to be moot for 

time series, because the concept of “centroid” for warped 

time series is ill-defined. It is the central contribution of 

this paper to show that we can take the “centroid” for 

warped time series in a principled manner that allows us to 

achieve both improvements in accuracy and reduced 

computational requirements at run time. 

In the last decade the cognitive science community has 

presented strong evidence that the visual system’s 

remarkable abilities stem, at least in part, from its ability to 

represent sets of objects by a “gist” or “ensemble”2, which 

may be simply the average of the objects [17]. A recent 

paper notes that the major research direction of the 

cognitive science community is devoted simply to 

                                                           
1 The source code proving the statistical significance is available 

at [15]; it performs two-tailed Bonferronni-Dunn test to 

compare pairs of methods NCC to NN [16]. 
2 Note that the cognitive science use of “ensemble” is unrelated to 

the more familiar machine learning meaning.  

“determining how these (average) representations are 

computed, why they are computed and where they are 

coded in the brain” [18]. 

The difficulty faced by the cognitive scientists is similar 

to the pragmatic difficulty we face here. In some cases 

averages may be well defined, for example, the average 

height of Norwegian men. However, for some objects it is 

much less clear how to represent and compute averages. 

For example, computing an average face has been pursued 

since at least 1883 (again, Francis Galton, using composite 

photography) but significant progress has only been made 

in the last decade. Tellingly, this progress in face averaging 

was exploited to produce dramatic improvements in 

classification accuracy with a Science paper [19] boasting 

“100% Accuracy in Automatic Face Recognition” (this is 

the paper’s actual title). 

Compared to the complexity inherent in faces, time 

series might seem simple to average, however as Figure 1 

hints at, the classic definition of centroid for time series 

usually produces a prototype which is not typical of the 

data.  

IV. AVERAGING UNDER TIME WARPING 

We start by presenting the problem of creating average 
centroids that are consistent with the warping behavior of 
DTW. We then introduce DBA, which is the averaging 
method that will be used to derive our fast and accurate 
classifier in the next section.  

For our problem, each object in the data set is a time 
series, which may be of different length. 

Definition 1: Time Series. A time series 𝑇 = (𝑡1, … , 𝑡𝐿)  
is an ordered set of real values. The total number of real 
values is equal to the length of the time series (𝐿). A dataset 
𝑫 = {𝑇1, … , 𝑇𝑁} is a collection of 𝑁 such time series. 

A. Averaging under time warping – related work 

Computational biologists have long known that 

averaging under time warping is a very complex problem, 

because it directly maps onto a multiple sequence 

alignment: the “Holy Grail” of computational biology [20]. 

Finding the multiple alignment of a set of sequences, or its 

average sequence (often called consensus sequence in 

biology) is a typical chicken-and-egg problem: knowing the 

average sequence provides a multiple alignment and vice 

versa. Finding the solution to the multiple alignment 

problem (and thus finding of an average sequence) has 

been shown to be NP-complete [21] with the exact solution 

requiring 𝑂(𝐿𝑁) operations for N sequences of length L. 

This is clearly not feasible with more than a dozen 

sequences (just 45 sequences of length 100 would require 

more operations than the number of particles in the 

universe).  

Finding the average of a set is best seen as an 

optimization problem, as explained by the definition below.  
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Definition 2: Average object. Given a set of objects 
𝑂 = {𝑂1, … , 𝑂𝑁} in a space 𝐸 induced by a measure 𝑑, the 
average object �̅� is the object that minimizes the sum of the 
squares to the set:  

arg min
�̅�∈𝐸

∑ 𝑑²(�̅�, 𝑂𝑖)

𝑁

𝑖=1

 (1) 

This definition demonstrates that finding the average of 

a set is intrinsically linked to the measure that is used to 

compare the data. This means that the average method has 

to be specifically designed for every measure that is used to 

compare data.   

In our case, the objects are time series and the measure 

is DTW. We can thus now define what the average 

sequence should be, in order to be consistent with Dynamic 

Time Warping.  

Definition 3: Average time series for DTW. Given a set 
of time series 𝑫 = {𝑇1, … , 𝑇𝑁} in a space 𝐸 induced by 

Dynamic Time Warping, the average time series �̅� is the 
time series that minimizes:   

arg min
�̅�∈𝐸

∑ DTW²(�̅�, 𝑇𝑖)

𝑁

𝑖=1

 (2) 

Many attempts at finding an averaging method for 

DTW have been made since the 1990s [22-25]. Researchers 

have exploited the idea that the exact average of two time 

series can be computed in 𝑂(𝐿2). These papers have 

proposed different tournament schemes (the guide trees in 

computational biology) in which the sequences should be 

averaged first. Interestingly, none of these authors appear to 

have made the connection with the multiple sequence 

alignment problem; the most advanced method in 2009, 

PSA [24], heuristically averages the closest objects first, 

which corresponds to an idea proposed some 20 years 

earlier in computational biology [26].  

There is a limit, however, to which the comparison 

between biological sequences and time series can be 

pushed. Ultimately, time series are sequences of real-

valued numbers and not of discrete symbols like 

DNA/RNA sequences. While two genes coding for 

hemoglobin have almost certainly evolved from a common 

ancestor (although homoplasy can almost never be 

completely ruled out), no such lineage is present for time 

series. Nevertheless, we can sometimes imagine a domain 

in which there is an idealized Platonic prototype, of which 

we can only see corrupted (i.e. “warped”) examples. In this 

view, DTW based averaging can be seen as an attempt to 

recover the “ancestor” state. For example, the ideal 

prototype may be an individual’s internal (muscle memory) 

representation of her golf swing or her rendition of a song, 

of which we can only observe external performance 

approximations. 

B. DBA: the best-so-far method to average time series for 

Dynamic Time Warping 

DTW Barycenter Averaging (DBA), introduced in [8], 

exploits the parallels between time series and 

computational biology, while taking into account the 

unique properties of the former. We have shown in [8] that 

DBA outperforms all existing averaging techniques on all 

datasets of the UCR Archive [27] available at the time. In 

particular, it always obtained lower residuals (Equation 2) 

than the state-of-the-art methods with a typical margin of 

about 30%, making it the best method to date for time 

series averaging for DTW.  

DBA iteratively refines an average sequence �̅� and 

follows an expectation-maximization scheme: 

1. Consider the average sequence �̅� fixed and find the 

best multiple alignment3 𝑀 of the set of sequences 

𝑫 with regard to �̅�, by individually aligning each 

sequence of 𝑫 to �̅�.  

2. Now consider 𝑀 fixed and update �̅� as the best 

average sequence consistent with 𝑀.  

Table I gives the pseudocode for DBA.  

Algorithm 1 simply finds the initial average sequence �̅� 

and then refines it I times. The medoid sequence is usually 

a good candidate for the initialization of the algorithm. 

Note that if computation time is a concern, we have shown 

that randomly picking any sequence of the set usually gives 

good results also (see [8] – Section 4.5).  

Algorithm 2 describes one iteration of DBA, i.e. one 

refinement of the current average sequence. Refining an 

average sequence is composed of two steps. First, every 

sequence 𝑆 in 𝑫, the set of sequences to average, is aligned 

to the to-be-refined average sequence 𝑇𝑖𝑛𝑖𝑡
̅̅ ̅̅ ̅̅ . It is important 

to note that this process is performed independently for 

every sequence in the set, and thus does not use any order 

on the sequences, unlike other state-of-the-art methods. 

Next, the position of every element of the average sequence 

�̅�(𝑖) is set as the center of the elements of the sequences 

that had been associated to element 𝑖 of 𝑇𝑖𝑛𝑖𝑡
̅̅ ̅̅ ̅̅ . When the 

time series have only one dimension, this is simply 

performed with the arithmetic mean; for higher-

dimensional sequences the position of every element can be 

updated as the barycenter of the set, i.e. using the 

arithmetic mean on each dimension separately [29].  

Algorithm 3 simply computes DTW between the 

reference sequence and the set of sequences, and 

memorizes what elements of the sequences have been 

associated with each element of the reference sequence.  

                                                           
3 It actually finds the compact multiple alignment [28].  
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TABLE I. GENERAL ALGORITHM FOR DBA 

Algorithm 1. DBA( 𝑫 , I )  

Require: 𝑫: the set of sequences to average 
Require: 𝐼: the number of iterations 

1: 
2: 
3: 

�̅� = medoid( 𝑫 ) // get the medoid of the set of sequences 𝑫 
do 𝐼 times �̅� = DBA_update( �̅� , 𝑫 ) 
return �̅�    

Algorithm 2. DBA_update( 𝑇𝑖𝑛𝑖𝑡
̅̅ ̅̅ ̅̅  , 𝑫 )  

Require: 𝑇𝑖𝑛𝑖𝑡
̅̅ ̅̅ ̅̅ : the average sequence to refine (of length L) 

Require: 𝑫: the set of sequences to average 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 

//  Step #1: compute the multiple alignment for  𝑇𝑖𝑛𝑖𝑡
̅̅ ̅̅ ̅̅  

alignment  = [ ∅, ⋯ , ∅ ] // array of L empty sets 
for each S in 𝑫 do 

alignment_for_S = DTW_multiple_alignment ( 𝑇𝑖𝑛𝑖𝑡
̅̅ ̅̅ ̅̅  , S ) 

for i=1 to L do 
alignment[i] = alignment[i] ∪ alignment_for_S[i] 

done 
done 
//  Step #2: compute the multiple alignment for the alignment 
let �̅� be a sequence of length L 
for i=1 to L do 

�̅�(𝑖) = mean( alignment[i] ) //arithmetic mean of the set 
done 
return �̅�    

Algorithm 3. DTW_multiple_alignment ( 𝑆𝑟𝑒𝑓  , S )  

Require: 𝑆𝑟𝑒𝑓: the sequence for which the alignment is computed 

Require: S: the sequence to align to 𝑆𝑟𝑒𝑓 using DTW 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 

//  Step #1: compute the accumulated cost matrix of DTW 
cost = DTWCumulMat( 𝑆𝑟𝑒𝑓 , S ) 

//  Step #2: store the elements associated with 𝑆𝑟𝑒𝑓 

L = length( 𝑆𝑟𝑒𝑓  ) 

alignment  = [ ∅, ⋯ , ∅ ] // array of L empty sets 
𝑖 = rows( cost )  // i  iterates over the elements of 𝑆𝑟𝑒𝑓 

𝑗 = columns( cost )  //j iterates over the elements of S 
while (𝑖 > 1) && (𝑗 > 1) do 

alignment[𝑖] = alignment[𝑖] ∪ 𝑆(𝑗) 
if 𝑖 == 1 then 𝑗 = 𝑗 − 1  
else if 𝑗 == 1 then 𝑖 = 𝑖 − 1  
else 

score = min( cost[i-1][j-1] , cost[i][j-1] , cost[i-1][j] ) 
if score = = cost[i-1][j-1] then 

𝑖 = 𝑖 − 1 
j = 𝑗 − 1 

else if  score = = cost[i-1][j] then 𝑖 = 𝑖 − 1 
else 𝑗 = 𝑗 − 1 
end if 

end if 
done 
return alignment 

 

Algorithm 4. Medoid( 𝑫 )  

Require: 𝑫: the set of sequences to find the medoid from 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 

minSS = +∞ //minimum sum of squares 
for each 𝑆1 in 𝑫 do 

// computing the sum of squares for 𝑆1 
tmpSS=0 
for each 𝑆2 in 𝑫 do 

tmpSS+= (𝐷𝑇𝑊(𝑆1, 𝑆2))
2
 

done 
if tmpSS < minSS then 

medoid = 𝑆1 
minSS = tmpSS 

end if 
done 
return medoid 

 

   
(a) (b) (c) 

Figure 5: Visual comparison of the Euclidean average to our proposed 

DBA approach. This example highlights the inability of the Euclidean 

average to preserve the shape of warped time series. (a) One class of the 
Trace dataset [22]. (b) The average time series produced by the Euclidean 

average. (c) The average time series produced by DBA.  

Note that an implementation of this pseudocode in 

Matlab and Java is available at [30].  

Figure 5 shows that DBA can preserve the shape of 

warped time series while the traditional Euclidean average 

provides a prototype that does not resemble any of the time 

series of the set. Note also that in Figure 1 we showed a 

similar example of the algorithm’s superior output on three 

examples of a pattern associated with an oil refinery 

process. This visual comparison is, however, only 

qualitative. Next we demonstrate the quantitative 

superiority of DBA over other techniques, i.e. its ability to 

minimize the sum of the residuals expressed in Equation 2. 

Our previous work in [8] demonstrated the superiority 

of DBA over state-of-the-art techniques (Non-Linear 

Alignment and Averaging Filters – NLAAF – and 

Prioritized Shape Averaging - PSA) using the UCR 

archive, then composed of 20 datasets. We complement this 

evaluation with Appendix B, which quantitatively assesses 

DBA against both the medoid sequence and the Euclidean 

average – which had not been included in [8] – over all 44 

datasets of the UCR archive [27]. These results show that 

DBA outperforms by far these two methods on all the 

datasets in the archive.  

In addition, this paper also extends the definition of 

DBA by providing a proof of its convergence for l2-norm, 

i.e., that the sum of the squares (Equation 2) always 
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decreases between two iterations (or refinements). This 

proof is provided in Appendix A.  

V. OUR FAST AND ACCURATE CENTROID-BASED 

CLASSIFIER 

In recent years there has been an increasing interest in 

using anytime algorithms for data mining [3,31,39]. 

However the variant known as contract algorithms have 

received less attention. Contract algorithms are a special 

type of anytime algorithms that require the amount of run-

time to be determined prior to their activation. In other 

words, contract algorithms offer the anytime tradeoff 

between computation time and quality of results, but they 

are not interruptible. 

Problem Statement Contract Time Series Classification: 

Given (1) a large time series training dataset, (2) an upper 

bound on the amount of computational resources that may 

be consumed for classification, and (3) no limits on the 

computational resources that may be consumed for training, 

produce the most accurate classifier possible.  

 We assume that the computational resource constraint 

will be time, not space, and that it will be given to us in the 

form of the number of CPU cycles available each second. 

For ease of exposition we assume that the constraint will be 

given as a positive integer C, which is the number of 

exemplars per class that we can examine when asked to 

classify a new object. Figure 6 illustrates this problem 

statement.  

 
Figure 6: A visual intuition of an instance of our problem statement: Given 
the Oil-13 time series training dataset (left), and a user constraint C, here 

‘1’. Produce a new dataset with C items per class (right), such that the 

accuracy on future data is maximized.   

As we explained in the introduction, based on the 

consensus of the literature and our own experiments, we 

believe that the best solution will be a variant of Nearest 

Neighbor classification. While decision trees and Bayesian 

classifiers are very efficient, and although time series 

classification is an active and competitive research area, no 

competitively accurate classifiers for time series based on 

these methods have been produced [2,3].  

What then is the space of techniques we can explore? 

After exhausting all known optimization techniques (early 

abandoning, removing the unnecessary square root 

calculation, lower bounding, etc.) we can consider 

manipulating the following: 

 Reducing the data cardinality, and doing NN-DTW on 

the reduced cardinality data. While classification on 

suitable reduced cardinality data has little effect on 

accuracy [32], it only helps scalability on specialized 

hardware. We are aiming for a general solution. 

 Reducing the data dimensionality, and doing NN-DTW 

on the reduced dimensionality data. This idea has been 

in the literature for at least two decades, and seems to 

have been rediscovered many times. The idea works 

well when the raw data is oversampled. For example, 

some bedside machines report electrocardiograms at 

up to 4,096Hz, yet there is little evidence that anything 

above 256Hz is needed for classification. However 

here we assume that the data we are given is sampled 

at an appropriate rate. 

 Reducing the number of objects the nearest neighbor 

algorithm must see. This can be done by selecting a 

subset of the data (which is known as data editing or 

condensing) or aggregating the data. 

As the reader will have intuited by now, it is the last 

idea we intend to pursue. There are several obvious ways to 

reduce the number of objects the nearest neighbor 

algorithm must see, and several variants of intelligent data 

editing have been proposed [3]. However to the best of our 

knowledge no one has consistently considered data 

aggregation for NN-DTW. When it has been considered, 

the artifacts produced by averaging methods for Dynamic 

Time Warping, such as the one hinted at in Figure 1 and 

acknowledged in the literature by [8,33,34], suggests that 

this is an unpromising avenue to explore.  

Conversely, as noted above, aggregation methods 

(including, but not limited to the Nearest Centroid 

Classifier) have certain properties that seem very desirable. 

In particular, they provide a condensed model of the 

aggregated set, allowing speed up, and they weight 

information from every training instance, potentially 

improving accuracy. However, as we explain in the next 

paragraph, simply averaging all the objects in each class is 

unlikely to work well in most domains, and this motivates a 

clustering-based data condensing approach.  

While it is possible that for some datasets, a single 

prototype may capture the “essence” of a class, for other 

datasets it may require a small number of prototypes. 

Moreover, a single dataset may exhibit both possibilities on 

a class-by-class basis. For example, for the “Japanese flag” 

dataset shown in Figure 4, a single centroid is clearly 

optimal for the circle/red class, but we would need, say 

eight suitably arranged examples from the green/square 

class arranged in an octagon to carve out a decision 

boundary that approximates the true circular decision 

boundary. To give a more concrete example, consider the 

case study in insect surveillance we explore in Section 

VI.A, which appears to be a single class, Culex 

stigmatosoma, the mosquito that spreads West Nile virus. 

However, this insect, like most mosquitoes, is highly 

sexually dimorphic. If we try to create a single template to 

represent both males and females we are condemned to 

have a template that represents neither. However, by 

Condesed_Oil =Reduce(Oil - 13,1)

Oil - 13

Condesed_Oil
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clustering each individual class, we hope to be able to 

account for any natural polymorphism within the class. In 

Table II we present the algorithm for such a clustering-

based approach to condensing a dataset. 

TABLE II. ALGORITHM TO CONDENSE TRAINING DATASET 

Algorithm 5. Reduce(Data, C)  
Require: Data: dataset; C: The number of exemplars per class 

1: 
2: 
3: 
4: 
5: 
6: 
7: 

// partition the data into  C sets of time series 
Clusters = do_clustering(Data,C) //for example with K-means 
Condensed_Data = () 
for each Cluster in Clusters do 

Condensed_Data.add(DBA(Cluster,15)) 
done 
return Condensed_Data  

It is important to note, however, that we see our main 

contribution as proposing a warping-invariant-averaging 

based condensation framework, of which Algorithm 4 

given in Table II is simply one concrete and 

straightforward partitional clustering example. To further 

reinforce this notion in our experimental section, we also 

consider a warping-invariant-averaging hierarchical 

clustering based condensation framework. 

VI. EXPERIMENTAL EVALUATION 

In this section, we assess the performance of our 

averaging-based reduction methods for time series 

classification, over the state-of-the-art data condensing 

methods (which do not average time series). Note that the 

distance measure used for all experiments is DTW.  

We compare the following algorithms; the last two of 

which exploit our averaging technique: 

 Random Selection: Here we randomly sample the 

training data, selecting as many samples as we can use 

under the contract time. 

 Drop{X}: There has been significant work on data 

editing (numerosity reduction/condensing) for nearest 

neighbor classification [35]. All these algorithms 

create some list of nearest neighbors, of both the same 

class (associates) and of different classes (enemies), 

and use a weighted scoring function based on this list 

to determine the worst exemplar. We compare to three 

variants; Drop1, Drop2 and Drop3, see [35] for full 

details on their subtle differences. 

 Simple Rank (SR): This method gives to each 

instance a rank according to its contribution to the 

classification [36]. A leave-one-out 1-NN 

classification is performed on the training set, and the 

rank of the instance is calculated as the following 

formula: 

𝑟𝑎𝑛𝑘(𝑥) = ∑ {
1 𝑖𝑓 𝑐𝑙𝑎𝑠𝑠(𝑥) = 𝑐𝑙𝑎𝑠𝑠(𝑥𝑖)

−2
(#𝑐𝑙𝑎𝑠𝑠𝑒𝑠 − 1)⁄ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}

𝑖

 

where 𝑥𝑖 are associates of 𝑥. The ties are broken by 

sorting the instances according to their distance to their 

nearest “enemy” (standard terminology).  

 K-Medoids: This well-known method, also known as 

“partitioning around medoids”, aims at minimizing the 

intra-cluster sum of squares, by using the proximity of 

objects to the medoids of the clusters formed by the 

algorithm. Note that the medoid of a set is the object 

from the set itself, that minimizes the sum of the 

squares (same objective as Equation 2, with the 

additional condition that �̅� ∈ 𝑫). K-medoid thus does 

not use any average object.  

And finally, two methods which instantiate our averaging-

based condensing framework: 

 K-Means: Similar to K-medoids, this well-known 

method aims at minimizing the intra-cluster sum of 

squares. The clusters are formed by using the 

proximity of objects to the average objects (or 

centroids) of the different clusters. We use DBA to 

perform averaging. 

 AHC with Ward’s criterion: Starting with every 

object in its own cluster, agglomerative hierarchical 

clustering (AHC) progressively merges the most 

similar clusters until all the objects are part of the same 

cluster. Similar to K-means and K-medoids in its 

objective, the Ward’s criterion ranks the pairs of 

clusters with regard to the increase in the weighted 

intra-cluster sum of squares. Here again we use DBA 

to perform averaging. 

We consider situations where we can only visit a small 

handful of exemplars, as few as just one per class, as this is 

the defining characteristic of our problem setting. In any 

case, we expect (and empirically demonstrate) that all 

algorithms converge as we allow the size of the reduced 

dataset used to increase. That is to say, if we randomly 

sample as many time series as there are in the training set, 

we actually obtain the full training set, which is logically 

equivalent to the 1-NN classifier. The behavior is similar 

for the other techniques: the reduced sets of time series all 

tend to the initial training set as their sizes increase.  

Our experiments are divided into three parts:  

A. We begin with a case study, to ground the utility of our 

ideas in the real world.  

B. Having shown that average-based methods outperform 

sampling-based ones on our case study, we further 

assess the performance of the different methods on a 

full-scale experiment with 42 datasets. We demonstrate 

the clear superiority of average-based methods for 

condensing the model of the class into a handful of 

exemplars.  

C. We show that not only do average-based methods 

provide better solutions than the state of the art for 

reducing the size of the training set, but also that they 
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make it possible to improve on the classification 

accuracy, compared to the full 1-NN classifier.  

Note that the runtimes for the classification phase are 

directly proportional to the number of prototypes that are 

used, because the similarity measure is the same and has 

constant complexity with regard to the length. This means 

that for a given dataset, and a given number of prototypes 

per class, the classification time should be exactly the same 

regardless of the algorithm. Moreover, as explained in the 

problem statement, we are not interested in the training 

time.  

A. Case Study in Insect Surveillance 

Recent work has shown that it is possible to classify 

flying insects with high accuracy by converting the audio 

of their flight (i.e. the familiar “buzz” of bees) to an 

amplitude spectrum [37], which, as shown in Figure 7 can 

essentially be considered a “time series”. 

 
Figure 7: An audio snippet of an insect flight sound (top) can be converted 

into a pseudo time series (bottom) and used to allow classification  

All previous work on insect classification had assumed 

that a single feature extracted from the amplitude spectrum, 

the wingbeat frequency, was the only useful feature in the 

amplitude spectrum. However [37] forcefully demonstrates 

that using the entire spectrum, and treating the problem as a 

time series classification problem, significantly reduces the 

error rate. In retrospect this is not surprising. A G note on a 

piano and an open string G note on a guitar have the same 

frequency of 196Hz (about the same frequency as a honey 

bee), but are easy to tell apart. 

The ability to automatically classify insects has 

potential implications for agricultural and human health, as 

many plant/human diseases are vectored by insects. The 

promising results presented in [37] are demonstrated in the 

laboratory setting, and exploit large training datasets to 

archive high accuracy. However, field deployments must 

necessarily be on inexpensive resource-constrained 

hardware, which may not have the ability to allow nearest-

neighbor search on large training datasets, up to hundreds 

of times a second. Thus we see this situation as an ideal 

application for our work. 

We recorded the flying sound of male and female 

insects of the species Culex stigmatosoma, which is a 

vector of several diseases such as the West Nile Virus and 

Western Equine Encephalitis [38]. Being able to classify 

male vs. female mosquitoes is important because only the 

females actually spread disease, and different interventions 

are used to control females (to reduce biting now) and 

males (to reduce biting one generation hence). 

Using our pseudo-acoustic sensor [31], we recorded 

about 10,000 flights and created a dataset by randomly 

choosing 200 examples of each class (male/female). We 

then randomly split this dataset into two balanced train/test 

datasets of same size.  

As we can see in Figure 8, our algorithm is able to 

achieve a lower error-rate using just two items per class, 

than by using the entire training dataset. This is an 

astonishing result. The curves for the other approaches are 

more typical for data condensing techniques [3,35], where 

we expect to pay a cost (in accuracy) for the gains in speed.  

The error rate for our approach is minimized at 19 items 

per class, suggesting we can benefit for some diversity in 

the training data. This diversity probably reflects the 

diversity of temperatures, as we record 24 hours a day over 

several days.  However even if we kept just one pair of 

exemplars from each class, we would have an error-rate of 

just 0.13, which is still better than using all the data. These 

results are significant in this domain, where a low powered 

device may have to classify up to hundreds insects per 

second with limited computational resources.  

 
Figure 8: (best viewed in color) The error rate of various data condensing 

techniques for every output training size from 1 per class to 100 per class. 

The curves are slightly smoothed for visual clarity; the raw data 
spreadsheets are available at [15]. 

We now proceed with the rest of the experiments, in 

order to assess the generality of the two observations that 

we have made on this case study:  

1. The average-based methods condense better the 

information about the class than the state-of-the-

art methods (detailed in the next sub-section: B).  

2. Not only are average-based methods better at 

reducing the size of the training set, but they can 

also improve the accuracy of the classifier. This 
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has been observed in Figure 8 where reducing the 

training set with the K-means algorithm allows us 

to derive a classifier that performs better than 1-

NN using the full training set (error rate of 0.092 

vs 0.14). This observation will be assessed in sub-

section C.  

Finally, note that all the raw material generated by our 

experiments (for example, the charts similar to Figure 8 for 

all the datasets, but also the rankings used in the reminder 

of this section) cannot be completely included in the paper 

due to space limitations; we provide detailed results for 3 

more representative examples in Appendix C; other results 

are available at [15].   

B. Condensing the model of the class to a handful of 

exemplars 

To demonstrate that the results in the case study 

represent typical improvements over the rival methods, we 

will test on a very diverse collection of datasets. We have 

compared our approach on all the datasets in the UCR time 

series archive [27]4. A description of a representative 

sample of these datasets is given in TABLE III.  

TABLE III: PRESENTATION OF A SAMPLE OF THE DATASETS USED 

Name Length Size train/test # classes 

Gun-Point 150 50/150 2 

Swedish Leaf 128 500/625 15 

TwoPatterns 128 1,000/5,000 4 

FaceAll 131 560/1,690 14 

Coffee 286 28/28 2 

Haptics 1,092 155/308 5 

Inline Skate 1,882 100/550 7 

WordsSyn. 270 267/638 25 

 

We want to compare the performance of the different 

methods when they are authorized (under the “contract”) to 

use, say, 1 prototype per class (or #𝑐𝑙𝑎𝑠𝑠𝑒𝑠 prototypes for 

Random, DropX and SimpleRank). To this end, we follow 

the standard practices for the statistical comparison of 

classifiers [16] and use the average ranking of each method 

over all the datasets. This will allow us to assess what 

algorithm exhibits, on average, the best classification 

performances under the contract restriction.  

For every dataset and every algorithm, we compute the 

error-rate when constrained to use a reduced set of 𝑘 

prototypes per class only. Then, for every dataset, we rank 

the methods by error-rates: rank 1 is assigned to the best 

method; rank 8 is assigned to the worst one.5  

                                                           
4 We use 42 datasets, i.e. all but two of the datasets of the archive; 

we have excluded the StarLightCurve and FetalECG for 

computational reasons.  
5 In case of ties, we assign the average (or fractional) ranking. For 

example, if there is one winner, two seconds and a loser 

[1,2,2,4], then the fractional ranking will be [1,2.5,2.5,4].  

We then compute the average rank for every method 

(see [34 – Section 3.2.2]). Let 𝑟𝑖
𝑗
 be the rank of the 𝑗𝑡ℎ of 𝐴 

algorithms on the 𝑖𝑡ℎ of 𝑁𝑑 datasets. The average rank for 

algorithm 𝑗 is computed as 𝑅𝑗 =  
1

𝑁𝑑
∑ 𝑟𝑖

𝑗
𝑖 . 

This gives a direct general assessment of all the 

algorithms: the lowest rank corresponds to the method that, 

on average, obtains the lowest error-rate for the considered 

“contract”.  

TABLE IV shows the average rank of all algorithms over 

the datasets of [27] (again, the raw results giving the error 

rate and rank for every method and every dataset is 

available at [15]). These results show unanimously that the 

methods that use an average sequence (K-means and AHC) 

significantly outperform the prior state of the art. 

TABLE IV: AVERAGE RANKING OF THE CONDENSING METHODS FOR 1 TO 5 

PROTOTYPES PER CLASS 

Algorithm Average rank 𝑹𝒋 using 𝑘 prototypes per 

class (or equivalent) 

𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 

Random 4.70 5.06 4.81 5.46 5.01 

Drop1 6.38 3.32 6.13 5.71 5.63 

Drop2 5.37 5.37 5.32 5.14 5.20 

Drop3 6.37 6.62 6.68 6.56 6.80 

Simple rank 5.23 5.35 5.42 5.02 5.14 

K-medoids 3.67 3.45 3.71 3.82 3.81 

K-means 2.14 1.96 2.13 2.13 2.36 

AHC 2.14 1.92 1.98 2.08 2.13 

𝜒𝐹
2 141 166 149 135 128 

Rmed-𝑅𝑚𝑒𝑎𝑛 1.52 1.49 1.58 1.69 1.45 

We first perform a Friedman test [16], in order to assess 

if the results are significantly different. This test is used to 

evaluate whether there is enough evidence to confidently 

state that the different methods have different mean ranks 

[16, Section 3.2.2]: 

𝜒𝐹
2 =

12𝑁𝑑

𝐴(𝐴 + 1)
[∑ 𝑅𝑗

2 −
𝐴(𝐴 + 1)2

4
𝑗

] (3) 

where 𝑁𝑑 is the number of datasets and 𝐴 is the number of 

algorithms compared. The values are reported in the 

second-to-last line of TABLE IV; given that the Friedman 

test follows a 𝜒2 distribution with 𝐴 − 1 degrees of 

freedom, these results yield a highly significant difference 

between the methods (𝑝 < 10−16).  

Having rejected the null hypothesis, we can proceed 

with a detailed comparison of the methods. Again, we 

follow standard practices for classifier comparison [16] and 

perform a two-tailed Bonferronni-Dunn test to compare 

pairs of methods. Our aim is to show that using the average 

yields better performance for time series classification than 

alternative approaches to contract time series classification, 

rather than trying to establish the prevalence of any 
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algorithm in particular.  To this end, we compare K-means 

to K-medoids. This pair of methods constitutes an excellent 

test-bed, because K-medoids appears to be the best 

performing method in the group of methods that do not use 

the average time series, while K-means appears to be the 

“worst” performing method in the group of methods that do 

use the average time series. In addition, these two methods 

are functionally comparable, because they have the same 

objective function to minimize the intra-cluster sum of 

squares. In this way, we are comparing the methods in the 

least advantageous way for averaging-based methods, in 

order to be extra-conservative in the assessment of average-

based methods vs. state-of-the-art methods. Comparing 8 

methods over 42 datasets, [16] shows that, to be 

statistically significant (𝛼 = 0.05) the critical difference 

(CD) between the average rankings has to be greater than: 

CD = 𝑞0.05 ⋅ √
𝐴(𝐴+1)

6𝑁𝑑
= 2.690 ⋅ √

72

252
≈ 1.438. 

We report the difference between the average rank 

obtained by K-medoids and the one obtained by K-means 

over the 42 datasets in the last line of TABLE IV. It shows 

that the difference is greater than the critical one CD, 

regardless of the number of prototypes used. As a result, we 

can confidently conclude that the K-means algorithm is 

statistically significantly better than K-medoids, and thus 

that the use of averaging-based methods yield better results 

than state-of-the-art methods.  

C. Classifying faster and more accurately 

We have seen in the case study on insect surveillance 

that average-based methods manage, with a reduced set of 

time series, to outperform the classification accuracy of the 

1-NN classifier on the full training set. This result may be 

counterintuitive, so in this section we will assess this 

phenomenon on a wide variety of datasets.  

To this end, we start by performing a standard 1-NN 

classifier using the full training set for classification. This 

gives us the reference error-rate against which we compare 

the results of different methods. We then progressively 

restrict the allowed size of the reduced set (𝑘), until we find 

the smallest value of 𝑘 for which the error-rate is smaller 

than the full 1-NN algorithm.  

Then, for each dataset (and similar to the experiment in 

the last section), we rank the methods by size of their 

reduced sets that are able to “beat” the full 1-NN classifier. 

The results of these experiments are reported in TABLE V; 

note that for fairness in the ranking, we do not include the 

Random sampling strategy because, on average, it cannot 

beat the results of the full 1-NN classifier.  

A first look at TABLE V shows that average-based 

methods again outperform the prior state of the art, with the 

K-means algorithm obtaining an average rank of 1.57 better 

than the K-medoids algorithm. Moreover, on average, the 

K-means method is able to condense the training set by 

71%. This means that on average over the archive of 

datasets, our method using the K-means algorithm achieves 

equal or better performance that the full 1-NN classifier, 

while only requiring 29% of the computational complexity. 

Again, this is an extraordinary result.  

TABLE V: AVERAGE RANKING OF THE CONDENSING METHODS ON THE SIZE 

OF THE DATASET REQUIRED TO BEAT THE FULL 1-NN CLASSIFIER 

Algorithm Average 

rank 

𝑹𝒋 

Average size of 

the reduced set 

(in % of the 

training set) 

Drop1 5.89 86% 

Drop2 5.07 76% 

Drop3 5.45 80% 

Simple rank 4.31 69% 

K-medoids 3.41 52% 

K-means 1.84 29% 

AHC 2.73 39% 

We can now assess the statistical significance of the 

superiority of K-means over K-medoids (the best method 

that does not average time series). 

Similar to the last sub-section, we start by computing a 

Friedman test over the ranking presented in the first column 

of TABLE V, which yields a highly significant difference 

between the methods (𝜒𝐹
2 > 173 which gives 𝑝 < 10−18).  

We can thus proceed with a detailed assessment of the 

performance of K-means versus the reference K-medoids. 

The critical difference (CD) for this experiment is: 

 CD = 𝑞0.05 ⋅ √
𝐴(𝐴+1)

6𝑁𝑑
= 2.638 ⋅ √

56

252
≈ 1.244.  

Moreover, we have: 

RKMedoids − RKMeans ≈ 1.571 > 1.244 

As this difference is far greater than the critical value, 

we can conclude confidently that the K-means algorithm 

requires significantly fewer prototypes than the K-medoids 

algorithm to “beat” the full 1-NN classifier.  

VII. DISCUSSION: WHY CAN WE GET BETTER RESULTS? 

We have seen that our approach can provide more 

accurate predictions for several domains. We wish to 

complete the intuition that we provided at the start of the 

paper, with a few elements that can explain this 

improvement, not only in the speed of the classification, 

but also in terms of accuracy. We posit that two conjugate 

elements are responsible for the potential gain in accuracy:  

1. Most datasets contain subclasses. Our condensing 

approach acts as a clustering of the data, which 

makes it possible to create different sub-models for 

the different subclasses. Such sub-classes are 

present in many applications, as it is for example the 

case for the Gun Point dataset, where each class has 
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recordings associated with people of different 

heights.  

2. NCC has a lower variance than NN. NN can 

represent much more complex decision boundaries.  

This greater power comes at the cost of greater 

capacity to overfit the data. Intuitively, in our 

example in Figure 2, when choosing the NCC 

classifier, we are forcing the decision boundary to 

be a straight line, while the NN's boundary can be a 

broken-line of high-complexity. This means that for 

NCC, we only have to estimate two parameters (the 

equation of the line) with 𝑛 samples, which leads to 

a much lower variance than for NN. 

VIII. CONCLUSIONS AND FUTURE WORK 

We have shown that an obscure result on averaging 

“warped” time series can be augmented to allow us to 

create much faster and/or more accurate time series 

classifiers. Our results may be particularly useful for 

resource constrained situations, such as wearable devices 

and “in-sensor” classifiers [36]. We have demonstrated the 

utility of our approach and ideas on more than 40 datasets, 

and made all code and data freely available to allow 

independent confirmation and extensions of our work [16]. 

Note that the classic data condensing methods such as 

Drop{X} occasionally do reasonably well, at least at some 

levels of condensation. Further note that the only operator 

in their search space, the deletion of items, is completely 

orthogonal to our proposed methods. This suggests that we 

may be able to further improve our search space by 

expanding our search space to include deletion. We 

propose to consider this avenue in future work. 
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APPENDIX A. PROOF OF CONVERGENCE OF DBA 

We want to prove that, at each iteration, DBA provides a 

better average sequence �̅�, i.e. has a lower sum of squares 

(Equation 2). DTW guarantees to find the minimum 

alignment between two sequences, which proves optimality 

for the first step of DBA (Table I - Algorithm 2 – lines 1 – 

8). Proving convergence thus requires showing that for a 

given multiple alignmen t𝑀, the computed �̅� is optimal.  

Let 𝑀 = 𝐷𝑇𝑊_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒_𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡(�̅�, 𝑫) (Table I – 

Algorithm 3) and 𝑀ℓ = 𝑀[ℓ]. We start by rewriting the 

objective function (sum of squares – SS):  

SS(�̅�, 𝑫) = ∑ DTW2(�̅�, 𝑇𝑖)

𝑁

𝑖=0

= ∑ ∑ (�̅�(ℓ) − 𝑒)2

𝑒∈𝑀ℓ

𝐿

ℓ=1

 (4) 

where 𝑒 is an element of a sequence of 𝑫 that has been 

“linked” to the ℓ𝑡ℎ element of �̅� by Dynamic Time 

Warping. Given that this function has no maximum, it is 

minimized when its partial derivative is 0:   

 𝜕SS(�̅�, 𝑫)

𝜕�̅�(ℓ)
 = 0  

⇒ ∑ 2 ⋅ (�̅�(ℓ) − 𝑒)

𝑒∈𝑀ℓ

 = 0  

⇒ �̅�(ℓ) = 
1

|𝑀ℓ|
∑ 𝑒

𝑒∈𝑀ℓ

 (5) 

This leads to SS(�̅�, 𝑫) being minimized when every 

element ℓ of  �̅� is positioned as the mean of |𝑀ℓ|. ∎ 

http://www.cs.ucr.edu/~eamonn/time_series_data/
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APPENDIX B. QUANTITATIVE EVALUATION OF DBA 

TABLE 6: COMPARISON OF INTRA-CLASS SUM OF SQUARES FOR DYNAMIC 

TIME WARPING (AS PER EQUATION 2) 

Dataset Intra-class sum of squares 

  
Medoid EUC DBA 

50words 64,451 21,635 9,315 

Adiac 376 438 202 

Beef 12.6 13.3 4 

CBF 33,836 14,738 12,654 

ChlorineConcentration 76,983 82,174 62,796 

CinC_ECG_torso 1,844,018 653,815 145,813 

Coffee 55,177 53,930 28,916 

Cricket_X 173,688 111,498 42,149 

Cricket_Y 165,918 91,182 38,534 

Cricket_Z 171,884 110,940 41,900 

DiatomSizeReduction 644 513 468 

ECG200 2,405 1,857 1,509 

ECGFiveDays 25,876 7,546 5,919 

FaceAll 93,441 41,152 32,818 

FaceFour 8,963 4,907 2,974 

FacesUCR 103,560 48,063 37,916 

FISH 1,048 697 510 

Gun_Point 1,558 1,843 479 

Haptics 27,469 9,376 6,474 

InlineSkate 203,280 94,621 16,779 

ItalyPowerDemand 2,930 2,825 2,470 

Lighting2 25,172 13,811 9,308 

Lighting7 12,444 7,764 5,066 

MALLAT 15,924 13,154 6,860 

MedicalImages 20,997 16,451 10,767 

MoteStrain 31,594 29,344 23,751 

OliveOil 0.17 0.20 0.10 

OSULeaf 84,824 25,376 10,929 

SonyAIBORobotSurface 5,419 5,102 4,165 

SonyAIBORobotSurfaceII 18,747 14,096 11,637 

StarLightCurves 891,254 659,048 134,463 

Stig 129,079 79,955 20,025 

SwedishLeaf 8,959 4,045 2,875 

Symbols 29,905 11,223 6,224 

synthetic_control 13,899 6,564 5,472 

Trace 18,157 21,172 3,294 

TwoLeadECG 2,516 1,644 1,481 

Two_Patterns 534,606 72,145 53,696 

uWaveGestureLibrary_X 637,481 385,641 121,159 

uWaveGestureLibrary_Y 617,871 443,306 108,913 

uWaveGestureLibrary_Z 685,485 423,927 127,617 

Wafer 670,529 522,476 253,702 

WordsSynonyms 84,584 29,555 11,052 

Yoga 372,221 118,981 41,132 

APPENDIX C. REPRESENTATIVE SAMPLES OF THE FULL 

SET OF RESULTS AVAILABLE AT [33] 

 
(a) ECG 200 

 
(b) Gun point 

 
(c) uWaveGestureLibrary 

Figure 9: (best viewed in color) The error rate (with standard deviation) of 

various data condensing techniques for every output training size from 1 
per class to 100 per class. The curves are slightly smoothed for visual 

clarity; the raw data spreadsheets are available at [33]. 

Figure 9(a) presents the results on the 

electrocardiograms time series dataset (ECG 200) which 

show the electrical potential between two points on the 

surface of the body caused by a beating heart [27]. In this 

dataset, the proposed condensing methods that make use of 

the average (KMeans and AHC) outperform all other 

methods. Similarly, as in our example for insect 

surveillance (Figure 8), a better overall accuracy can be 

reached while using a subset of prototypes instead of using 

the entire training set. The technique based on AHC 
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reaches an error-rate of 14% with only 16 prototypes per 

class, while the full 1-NN algorithm requires more than 50 

prototypes per class to obtain a 23% error-rate.  

Figure 9(b) presents the results on the Gun/NoGun 

motion capture time series dataset. Here again, our average-

based condensing techniques dominate state-of-the-art 

methods. It is interesting to observe the important reduction 

of the error-rate with 2 to 5 items per class. This can be 

explained by the multimodality of the two classes of the 

dataset, which has been created from recording of 

movements of people with different heights. 

Figure 9(c) presents the results on the 

uWaveGestureLibrary(Z) time series dataset which 

contains over 4000 samples of accelerometer readings for 

gesture recognition. This example shows that one prototype 

per class makes it possible to “explain” most of the 

variance in the classes of the dataset. This is another critical 

example, because gesture recognition systems not only 

have to be reliable, but also often must perform the 

recognition very quickly. With one prototype per class on 

this dataset that is composed of more than 100 training time 

series for each class, our condensing technique offers a 

100-fold speedup, with a loss in the recovery of only 5%. 

This starkly contrasts with a condensing using the best non-

average-based method (K-medoids), for which the error-

rate increases by 14% for the same speedup.  
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